肖 洒, 吴福忠, 杨万勤, 常晨晖, 李 俊, 王 滨, 曹 艺
四川农业大学生态林业研究所,林业生态工程重点实验室,成都 611130
高山峡谷区暗针叶林木质残体储量及其分布特征
肖洒, 吴福忠, 杨万勤*, 常晨晖, 李俊, 王滨, 曹艺
四川农业大学生态林业研究所,林业生态工程重点实验室,成都611130
摘要:木质残体是高山峡谷区暗针叶林生态系统的重要组成元素,其分布在林窗、林缘和林下可能具有较大的差异,但一直缺乏必要关注。因此,以典型川西高山峡谷区岷江冷杉(Abies faxoniana)原始林为研究对象,研究了高山峡谷区暗针叶林木质残体的储量特征及其在林窗、林缘和林下的分布特征。结果表明,岷江冷杉原始林木质残体总储量达53.00 t/hm2,且呈现林下的储量大于林窗和林缘的趋势。从林窗到林下木质残体的类型均以倒木为主,直径大于40 cm的木质残体储量占粗木质残体的74.55%—76.15%,林窗、林缘和林下Ⅲ和Ⅳ腐烂等级的粗木质残体储量之和分别占粗木质残体储量的50.02%、55.84%和62.90%。相对于林下和林缘,林窗内倒木和根桩的储量比例较小,但枯立木和细木质残体的储量比例较高。此外,林窗内较低腐烂等级粗木质残体的储量较高,而林下较高腐烂等级粗木质残体的储量显著高于林窗和林缘。这些结果为充分认识高山峡谷区暗针叶林生态系统林窗更新过程中木质残体相关的物质循环等关键生态过程提供了基础理论依据。
关键词:暗针叶林;木质残体;林窗;储量
木质残体(Woody debris, WD)主要指森林生态系统中倒木、枯立木、根桩和大枯枝等粗木质残体(Coarse woody debris, CWD),以及碎根残片和小枝等细木质残体(Fine woody debris, FWD)。粗木质残体占地上有机质储量的1%—45%,氮素储量的1%—21%,不仅是森林生态生态系统的重要营养库和碳库[1- 2],而且在森林生态系统的物质循环、水源涵养、生物多样性保育、森林更新与演替等方面具有十分重要的作用和地位[1,3]。已有的相关研究主要关注粗木质残体的功能[4- 5]、分解[6- 7]、形成原因[8]、特征[3]、储量[9-11]以及对林木更新的影响[12]等方面,且研究区域海拔主要集中在3000 m以下。受低温和地质灾害的影响,大于3000 m的高山峡谷区暗针叶林生态系统非常脆弱,森林更新更加依赖木质残体的分解。自然环境条件下,倒木、枯立木以及某些大径级枯枝等粗死木质残体的产生往往伴随着林窗的形成[1],这些林窗内的木质残体分解以后为森林系统更新提供了必要的基础养分。由于木质残体的分解根据径级和质量的不同往往需要数十年乃至上百年时间[1,13- 14],腐烂程度所代表的分解过程与森林更新导致的林窗消亡过程密切相关。可见,深入认识木质残体在林窗、林缘、林下的分布特征不仅有利于理解森林林窗在系统物质循环中的重要作用,而且有利于了解区域森林更新过程,但缺乏必要的关注。
川西高山峡谷区暗针叶林生态系统地处长江和青藏高原东缘,是我国第二大林区和青藏高原高寒植被区的重要组成部分,其在区域气候调节、水土保持、水源涵养和生物多样性保育等方面具有不可替代的作用和地位[15]。已有研究表明[16],川西暗针叶林林窗干扰频繁,土层瘠薄,林窗是推动森林演替和更新的重要驱动力,且森林更新过程中,木质残体提供了重要的生境、水源和营养库,但林窗对木质残体的影响研究却非常缺乏。为此,在已有研究的基础上,以典型川西高山峡谷区岷江冷杉(Abiesfaxoniana)原始林为研究对象,通过研究暗针叶林木质残体储量及其在林窗、林缘、林下的分布特征,认识高山峡谷区暗针叶林生态系统中木质残体的储量及其分布,为理解高山峡谷区暗针叶林生态系统生态过程提供基础数据。
1研究区域与研究方法
1.1研究区域概况
本研究区域位于四川省阿坝州米亚罗自然保护区毕棚沟 (E102°53′—102°57′,N31°14′—31°19′),地处青藏高原-四川盆地的过渡地带,四姑娘山北麓,区域总面积180 km2。区域气候属丹巴-松潘半湿润气候,随着海拔上升,气候呈现出暖温带、温带、寒温带、亚寒带和冰冻带的垂直分布规律。依据在该区3个地点连续两年的气象记录,区域内的年平均温度为2—4 ℃,最高气温23.7 ℃,最低温度为-18.1 ℃。年降雨量随着海拔高度的变化而变化,大约为801—850 mm,绝大多数降雨集中在5—8月。受季风的影响,区域内干湿季节差异显著:干季日照强、降水少、气候寒冷、空气干燥;湿季日照少、降雨多、气候温暖、多云雾。冬季较低的气温导致土壤的季节性冻融,土壤季节性冻结期长达4—6月,冻融明显。土壤发育缓慢,主要为雏形土(Cambisols)和新成土(Primosols),石砾、石块含量多,地表凋落物较厚。植被垂直成带明显,其类型和生境随海拔及坡向而分异。主要森林植被随海拔分异为岷江冷杉(Abiesfaxoniana)原始林、岷江冷杉和红桦(Betulaalbosinensis)混交林、岷江冷杉次生林。
1.2研究方法
本项研究主要关注直径≥2.5 cm的木质残体,结合Harmon[1]的分类标准和我国普遍采用的划分方法[10- 12,17],将2.5 cm≤直径<10 cm的木质残体作为细木质残体,将直径≥10 cm的木质残体作为粗木质残体。在此基础上,根据粗木质残体在森林生态系统中的状态和长度,进一步分为倒木、枯立木、根桩和大枯枝。为了与倒木进行区分,枯立木指的是倾斜度不超过45°,粗头直径≥10 cm,长度>1 m的木质残体;与枯立木的其他特征相似,高度<1 m的定义为根桩[13,18]。同时,根据已有的森林生态系统粗木质残体的分级系统并参考最新的研究方法对调查的粗木质残体进行腐烂等级划分[3,19],通过观察木质残体结构的完整性、是否存在树皮、木质部的状态和颜色、是否着生附属植物等方面来确定其腐烂程度。再采用间接的手段来进一步核实腐烂程度是否划分正确,即Ⅰ级:新鲜,死不足1a;Ⅱ级:开始腐解,小刀可刺进几mm;Ⅲ级:小刀可刺进2 cm;Ⅳ级:小刀可刺进2—5 cm;Ⅴ级:小刀可任意刺穿木质体。
2013年8月2日到20日,以研究区域内海拔3600 m的岷江冷杉原始林为研究对象,根据区域内的地势、坡度、坡向、林分组成等因素设置3个100 m100 m的典型样地。在每块样地,选择3个大林窗,在每个林窗内设置1个20 m20 m的样方,同时在林缘和林下分别设置3个20 m20 m的样方,每个样方之间的间距均超过5 m,每块样地包括9个样方(图1)。在每个20 m20 m的样方内逐一记录直径≥10 cm的粗木质残体(倒木、枯立木、大枯枝、根桩),记录内容包括长度或高度、大小头直径、枯立木记录胸径、腐烂等级等,对于长度超出样方大小的粗木质残体,只记录其在样方内的部分。对Ⅰ、Ⅱ、Ⅲ腐烂等级的粗木质残体,取圆盘带回实验室,Ⅳ、Ⅴ腐烂等级的粗木质残体用封口袋直接采样。采用排水法[2,20]测定其体积(V),烘干后得到其重量G,G与V的比值即为粗木质残体的密度。同时,在林窗、林缘和林下分别设置3个5 m5 m的样方,采用“收获法”收集样方内直径在2.5—10 cm之间的细木质残体,称量鲜重后,取3份混合样。在实验室将所取得的混合样在105°条件下烘干至恒重,得到样品鲜干重比,最后求出样品干重。
图1 样地及林窗示意图Fig. 1 Sample area and forest gap schematic
1.3粗木质残体的体积计算公式
根据研究目的,在查阅相关文献的基础上,选择以下4个公式来计算粗木质残体的体积,其中倒木、枯立木和大枯枝的体积计算公式分别参考了已有研究,根桩的体积根据圆柱体的体积公式来进行计算:
倒木的体积计算[21]
(1)
枯立木的体积计算[22]
V=DBA×H×f
(2)
大枯枝的体积计算[20]
(3)
根桩的体积计算
(4)
式中,V为体积(m3);dr为细头直径(cm),dR为粗头直径(cm),dM为中间直径(cm);DBA为胸高断面积(m2);H为枯立木和根桩高度(m);L为倒木和大枯枝的长度(m);f为形数(取0.45)。
1.4数据处理与统计分析
采用Microsoft Excel 2007软件进行数据的整理及作图,林窗、林缘和林下各种类型木质残体的储量乘以其在样地中的比例,即为木质残体的储量。采用SPSS 20.0软件进行统计分析,采用单因素方差分析(one-way ANOVA)比较林窗、林缘、林下不同类型、不同腐烂等级、不同径级之间的差异。
2结果与分析
2.1木质残体的总储量
基于前期的调查和计算得出样地林窗面积平均为3058.74 m2,林缘面积平均为2667.29 m2,林下面积平均为4273.97 m2。结合表1计算得出高山峡谷区暗针叶林木质残体储量为53.00 t/hm2,其中林窗储量为50.46 t/hm2,林缘储量为36.58 t/hm2,林下储量为65.07 t/hm2,且以林下储量最大,林窗次之,林缘最小。林窗、林缘和林下倒木显著高于其他类型,分别达72.37%,72.74和83.56%,根桩比例最小,不足1%。相对于林下和林缘,林窗内枯立木比例较高,但是根桩比例较低。然而,大枯枝和细木质残体比例以林缘相对较高,林窗次之,林下最小。
表1 暗针叶林不同类型木质残体的储量及其分配
括号内为标准偏差,同列不同小写字母表示显著差异(P<0.05);同行不同大写字母表示显著差异(P<0.05)
2.2不同径级粗木质残体储量及其分布
高山峡谷区暗针叶林粗木质残体的储量随着径级的增加逐渐增大,10—20 cm、20—30 cm、30—40 cm、40—50 cm和>50 cm的储量分别为2.20、3.50、3.98、12.76 t/hm2和25.47 t/hm2(表2)。不同径级粗木质残体储量在林窗、林缘、林下之间无显著差异,但从林窗到林下均以直径大于40 cm的粗木质残体为主,分别为76.15%、74.55%和75.68%。林窗20—30 cm的根桩储量显著高于林缘。林窗和林下大于50 cm的粗木质残体储量与其他径级的储量相比差异显著,林缘40—50 cm和大于50 cm的储量与10—20 cm、20—30 cm和30—40 cm的储量相比,分别达到显著水平。10—20 cm和20—30 cm比例均在林缘相对较高,林下相对较低。与林缘和林下相比,林窗内30—40 cm和>50 cm的比例相对较高,林下相对较低,林缘最小。
表2 暗针叶林不同类型粗木质残体径级组成
同行不同小写字母表示显著差异(P<0.05);同列不同大写字母表示显著差异(P<0.05);林窗FG: Forest Gap;林缘FE: Forest Edge;林下CC: Closed Canopy
2.3不同腐烂等级粗木质残体储量及其分布
如表3所示,高山峡谷区暗针叶林粗木质残体Ⅰ到Ⅳ腐烂等级,储量逐渐增加,Ⅰ到Ⅴ级粗木质残体的储量分别为27.68、80.27、100.03、188.22 t/hm2和82.88 t/hm2。不同腐烂等级粗木质残体储量在林窗、林缘、林下之间无显著差异,其中,林窗和林下以Ⅲ、Ⅳ腐烂等级为主,林缘以Ⅳ和Ⅴ腐烂等级为主。方差分析显示,林窗中各腐烂等级储量之间无显著差异,林缘Ⅳ级和Ⅴ级的储量与其他腐烂等级储量相比,分别达到显著水平,林下Ⅳ级的储量显著高于其他4个腐烂等级。相对于林缘和林下,林窗Ⅰ比例较高,Ⅳ级比例较低,而Ⅳ级比例在林下较高。
3讨论
3.1木质残体储量特征
高山峡谷区暗针叶林粗木质残体的储量明显高于北美的落叶林和南半球的热带雨林[4,23- 24],也高于同处亚热带的广州的常绿阔叶林、针阔混交林和针叶林[20],但低于新疆的针叶林和青藏高原贡嘎山冷杉原始林[9,25],与长白山和北美的针叶林木质残体储量相当[26- 27](表4)。高山峡谷区暗针叶林粗木质残体储量介于中国天然针叶林粗木质残体储量(0.09—91.75 t/hm2)之间,位于大部分生态系统粗木质残体储量(5—50 t/hm2)的上限。这是由于通常情况下,随着海拔的升高,温度逐渐降低,不利于分解木质单体的微生物的存活,所以木质残体的分解速率较小,残存量较大。何东进等[28]在福建天宝岩国家自然保护区的研究结果也得出了类似的结论,猴头杜鹃阔叶林和长苞铁杉林的粗木质残体储量随着海拔的升高而增大。高山峡谷区暗针叶林巨大的木质残体储量将会为森林生态系统提供丰富的营养库,木质残体分解的初期是一个碳源和氮源[2],它是温带森林生态系统CO2的主要来源[29]。此外,分解过程中释放的可溶性有机碳是森林土壤可溶性有机碳的重要来源[30],随着分解释放的氮素补充了土壤中的经过淋溶输出生态系统的氮,进一步为林木更新提供了条件,维持了高山峡谷区暗针叶林生态系统的平衡。
表3 暗针叶林不同类型粗木质残体腐烂等级组成
同行不同小写字母表示显著差异(P<0.05);同列不同大写字母表示显著差异(P<0.05);林窗FG:Forest Gap;林缘FE:Forest Edge;林下CC:Closed Canopy
表4 不同类型森林生态系统粗木质残体储量
木质残体的储量主要是木质残体的输入量和分解量相互作用的结果,其中木质残体的输入占主导地位[29],而细木质残体的数量和生态功能相对次要,所以木质残体储量主要取决于粗木质残体的储量。高山峡谷区暗针叶林倒木储量占木质残体储量的86.64%,说明倒木的储量是影响木质残体输入的重要部分。不同类型的粗木质残体,其径级大小表现出不同的分布规律,高山峡谷区暗针叶林倒木和枯立木以直径>40 cm的为主,而大枯枝的直径主要集中在10—30 cm。这是因为木质残体的分解是一个长期的过程[1,31],粗木质残体径级不同会导致粗木质残体的分解时间有所差异,而且表现为径级越大,分解速率越慢,分解时间越长,存在森林生态系统中的时间越长,粗木质残体储量越大[1]。高山峡谷区暗针叶林不同类型粗木质残体腐烂等级组成也有所不同,但总的来说,高山峡谷区暗针叶林粗木质残体以Ⅲ和Ⅳ腐烂等级居多,这与已有研究结果中度腐烂为主相同[10]。
3.2木质残体的分布特征
高山峡谷区暗针叶林木质残体的储量表现为林窗大于林缘小于林下,但均未达到显著水平,因为木质残体的分解是由木材本身的特性以及分解群落的丰度和活跃程度共同作用决定[32]。林窗中木质残体的储量小于林下,说明林窗的形成加快了林窗内木质残体的分解从而减少了木质残体的储量,这是因为林窗的形成改变了林分光照条件、水分条件、温度条件等[33],促进了分解者的活动。同时干扰程度的不同也会导致木质残体储量的差异,所以表现为林窗中木质残体的储量大于林缘。不同类型的粗木质残体随林窗的变化特征各有不同,林窗形成时,大量的树木的倒伏、折断、枯死,增加了林窗内枯立木的储量。林窗形成以后,减缓了新的倒木和根桩的积累速度,倒木和根桩的分解量大于输入量,进而减少了倒木和根桩的储量。受此影响,林窗内低腐烂等级(Ⅰ、Ⅱ级)木质残体的比例相对较高,林下Ⅳ腐烂等级木质残体的比例相对较高。
标准差与平均数的比值称为变异系数(C·V),变异系数可以作为各观测值变异程度的一个统计量。结果表明林缘和林下的根桩变异系数均大于100,这是因为根桩在高山峡谷区暗针叶林数量极少,其储量占木质残体的比例约为0.5%,且分布极为不均,所以本研究中未深入讨论根桩随林窗的变化特征。
不同生境细木质残体储量的大小为林缘>林窗>林下,林窗、林缘、林下细木质残体储量分别为5.11、6.05 t/hm2和4.49 t/hm2。已有研究[17]表明粗木质残体储量大时细木质残体储量也会相对较大,本研究结果却与此相反,说明细木质残体的储量不仅受粗木质残体储量的影响,还受活立木的郁闭度、环境、粗木质残体储量等因素的综合影响,但影响细木质残体储量的主要因素有待进一步研究。
参考文献(References):
[1]Harmon M E, Franklin J F, Swanson F J, Sollins P, Gregory S V, Lattin J D, Anderson N H, Cline S P, Aumen N G, Sedell J R, Lienkaemper G W, Gromack Jr K, Cummins K W. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 1986, 15: 133- 302.
[2]张利敏, 王传宽. 东北东部山区11种温带树种粗木质残体分解与碳氮释放. 植物生态学报, 2010. 34(4): 368- 374.
[3]Yuan J, Cheng F, Zhao P, Qiu R, Wang L, Zhang S X. Characteristics in coarse woody debris mediated by forest developmental stage and latest disturbances in a natural secondary forest ofPinustabulaeformis. Acta Ecologica Sinica, 2014, 34(4): 232- 238.
[4]Gough C M, Vogel C S, Kazanski C, Nagel L, Flower C E, Curtis P S. Coarse woody debris and the carbon balance of a north temperate forest. Forest Ecology and Management, 2007, 244(1/3): 60- 67.
[5]Owens A K, Moseley K R, McCay T S, Castleberry S B, Kilgo J C, Ford W M. Amphibian and reptile community response to coarse woody debris manipulations in upland loblolly pine (Pinus taeda) forests. Forest Ecology and Management, 2008, 256(12): 2078- 2083.
[6]Freschet G T, Weedon J T, Aerts R, van Hal J R, Cornelissen J H C. Interspecific differences in wood decay rates: insights from a new short- term method to study long- term wood decomposition. Journal of Ecology, 2012, 100(1): 161- 170.
[7]Shorohova E, Kapitsa E. Influence of the substrate and ecosystem attributes on the decomposition rates of coarse woody debris in European boreal forests. Forest Ecology and Management, 2014, 315(2): 173- 184.
[8]Liu W J, Schaefer D, Qiao L, Liu X B. What controls the variability of wood-decay rates?. Forest Ecology and Management, 2013, 310(1): 623- 631.
[9]Fukasawa Y, Katsumata S, Mori A S, Osono T, Takeda H. Accumulation and decay dynamics of coarse woody debris in a Japanese old- growth subalpine coniferous forest. Ecological research, 2014, 29(2): 257- 269.
[10]唐旭利, 周国逸. 南亚热带典型森林演替类型粗死木质残体贮量及其对碳循环的潜在影响. 植物生态学报, 2005, 29(4): 559- 568.
[11]杨礼攀, 刘文耀, 杨国平, 马文章, 李达文. 哀牢山湿性常绿阔叶林和次生林木质物残体的组成与碳贮量. 应用生态学报, 2007, 18(10): 2153- 2159.
[12]侯平, 潘存德. 森林生态系统中的粗死木质残体及其功能. 应用生态学报, 2001, 12(2): 309- 314.
[13]Harmon M E, Sexton J. Guidelines for Measurements of Woody Detritus in Forest Ecosystems. Seattle WA:US LTER Network Office, 1996.
[14]Progar R A, Schowalter T D, Freitag C M, Morrell J J. Respiration from coarse woody debris as affected by moisture and saprotroph functional diversity in Western Oregon. Oecologia, 2000, 124(3): 426- 431.
[15]Tan B, Wu F Z, Yang W Q, He X H. Snow removal alters soil microbial biomass and enzyme activity in a Tibetan alpine forest. Applied Soil Ecology, 2014, 76(2): 34- 41.
[16]张远东, 刘世荣, 赵常明. 川西亚高山森林恢复的空间格局分析. 应用生态学报, 2005, 16(9): 1706- 1710.
[17]何帆, 王得祥, 张宋智, 刘文桢, 沈亚洲, 胡有宁. 小陇山林区主要森林群落凋落物及死木质残体储量. 应用与环境生物学报, 2011, 17(1): 46- 50.
[18]Currie W S, Nadelhoffer K J. The imprint of land-use history: patterns of carbon and nitrogen in downed woody debris at the Harvard Forest. Ecosystems, 2002, 5(5): 446- 460.
[19]闫恩荣, 王希华, 黄建军. 森林粗死木质残体的概念及其分类. 生态学报, 2005, 25(1): 158- 167.
[20]张修玉, 管东生, 张海东. 广州三种森林粗死木质残体(CWD)的储量与分解特征. 生态学报, 2009, 29(10): 5227- 5236.
[21]Waddell K L. Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecological Indicators, 2002, 1(3): 139- 153.
[22]徐化成. 中国大兴安岭森林. 北京: 科学出版社, 1998.
[23]Wilcke W, Hess T, Bengel C, Homeier J, Valarezo C, Zech W. Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient stock, and turnover. Forest Ecology and Management, 2005, 205(1): 139- 147.
[24]Clark D B, Clark D A, Brown S, Oberbauer S F, Veldkamp E. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. Forest Ecology and Management, 2002, 164(1/3): 237- 248.
[25]刘翠玲, 潘存德, 梁瀛. 鳞毛蕨天山云杉林粗死木质残体贮量及其分解动态. 干旱区地理, 2009, 32(2): 175- 182.
[26]Zhou L, Dai L M, Wang S X, Huang X T, Wang X C, Qi L, Wang Q W, Li G W, Wei Y W, Shao G F. Changes in carbon density for three old- growth forests on Changbai Mountain, Northeast China: 1981—2010. Annals of Forest Science, 2011, 68(5): 953- 958.
[27]Spies T A, Franklin J F, Thomas T B. Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology, 1988,69(6): 1689- 1702.
[28]何东进, 何小娟, 洪伟, 刘勇生, 卞莉莉, 覃德华, 游惠明. 森林生态系统粗死木质残体的研究进展. 林业科学研究, 2009, 22(5): 715- 721.
[29]Bantle A, Borken W, Ellerbrock R H, Schulze E D, Weisser W W, Matzner E. Quantity and quality of dissolved organic carbon released from coarse woody debris of different tree species in the early phase of decomposition. Forest Ecology and Management, 2014, 329: 287- 294.
[30]Ohtsuka T, Shizu Y, Hirota M, Yashiro Y, Shugang, J, Limura Y, Koizumi H. Role of coarse woody debris in the carbon cycle of Takayama forest, central Japan. Ecological Research, 2014, 29(1): 91- 101.
[31]Ekbom B, Schroeder L M, Larsson S. Stand specific occurrence of coarse woody debris in a managed boreal forest landscape in central Sweden. Forest Ecology and Management, 2006, 221(1/3): 2- 12.
[32]Cadisch G, Giller K E. Driven by nature: plant litter quality and decomposition. Wallingford, Oxon: CAB International, 1997.
[33]陶建平, 宋利霞. 亚高山暗针叶林不同林冠环境下华西箭竹的克隆可塑性. 生态学报, 2006, 26(12): 4019- 4026.
Woody debris storage and its distribution in a dark coniferous forest in the alpine-gorge area
XIAO Sa, WU Fuzhong, YANG Wanqin*, CHANG Chenhui, LI Jun, WANG Bin, CAO Yi
KeyLaboratoryofEcologicalForestryEngineering,InstituteofEcology&Forestry,SichuanAgriculturalUniversity,Chengdu611130,China
Abstract:Woody debris, including coarse woody debris and fine woody debris, constitute a large component of forest biomass and play an essential role in forest biodiversity and material cycling in many forests. Many studies have been focused on the function, decomposition, formation, and storage of coarse woody debris, and their relations with forest regeneration under altitude 3000 m. Woody debris especially fallen and dead trees are often involved in the formation of a forest gap and forest regeneration, showing different distribution patterns from the forest gap center, and gap edge to a closed canopy. Compared to other forests, the dark coniferous forest ecosystems above altitude 3000 m can be limited more strongly by low temperature and natural disasters; therefore the forest regeneration can be more dependent on woody debris. Far less information has been available on woody debris storage and the distribution patterns that are affected by forest gaps in the dark coniferous forest. Accordingly, foe this study, we selected a typical primary forest of Minjiang fir (Abies faxoniana) in an alpine-gorge area in the eastern Tibet Plateau and western Sichuan. We analyzed woody debris storage and its distribution characteristics with different decay classes and diameters from forest gap center and gap edge to closed canopy. The results showed that woody debris storage was 53.00 t/hm2 in the dark coniferous forest, and which in closed canopy was greater than that in forest gap and forest edge. Log showed the greatest storage compared to other coarse woody debris, and stump storage accounted for less than 1% of total coarse woody debris storage. The woody debris whose diameter is greater than 40 cm accounted for 76.15%, 74.55%, and 75.68% of total woody debris storage in the forest gap center, gap edge, and closed canopy, respectively. No significant differences were observed in coarse woody debris with different diameters in the forest gap center, gap edge and closed canopy. The storage of woody debris with diameter 20—30 cm was significantly greater in the forest gap center than at the forest edge. The storage of woody debris of decay classes Ⅲ and Ⅳ accounted for 50.02% in the forest gap center, 55.84% at the gap edge and 62.90% in a closed canopy. No significant differences were found in coarse woody debris of different decay classes in the forest gap center, gap edge, and closed canopy. In contrast, the storage of woody debris of decay classes Ⅳ and V at the forest edge was significantly greater than that of other woody debris with three decay classes; the storage of woody debris of decay class Ⅳ was significantly greater at the gap edge in comparison other woody debris to four decay classes. In addition, the proportion of log and stump storage was relatively smaller in the forest gap center in comparison with a closed canopy and gap edge, but the proportion of snag and fine woody debris storage was relatively higher. Furthermore, the coarse woody debris storage of a lower decay class was higher in the forest gap center, whereas those of higher decay classes showed significantly greater storage in a closed canopy than in the forest gap center and gap edge. These results should advance the understanding of material cycling of woody debris during forest regeneration in the ecosystem of a dark coniferous forest.
Key Words:dark coniferous forest; woody debris; forest gap; storage
基金项目:国家自然科学基金项目(31170423, 31270498); 国家“十二五”科技支撑计划(2011BAC09B05); 四川省杰出青年学术与技术带头人培育项目(2012JQ0008, 2012JQ0059); 中国博士后科学基金(2012T50782)
收稿日期:2014- 07- 17; 网络出版日期:2015- 07- 22
DOI:10.5846/stxb201407171458
*通讯作者Corresponding author.E-mail: scyangwq@163.com
肖洒, 吴福忠, 杨万勤, 常晨晖, 李俊, 王滨, 曹艺.高山峡谷区暗针叶林木质残体储量及其分布特征.生态学报,2016,36(5):1352- 1359.
Xiao S, Wu F Z, Yang W Q, Chang C H, Li J, Wang B, Cao Y.Woody debris storage and its distribution in a dark coniferous forest in the alpine-gorge area.Acta Ecologica Sinica,2016,36(5):1352- 1359.