颜秉斐,彭剑峰,胡吉国,宋永会,程建光,姜诗慧
1.中国环境科学研究院城市水环境科技创新基地,北京 100012
2.山东科技大学化学与环境工程学院,山东 青岛 266590
3.环境基准与风险评估国家重点实验室,中国环境科学研究院,北京 100012
河道滞留塘对城市河流净化效果的影响
颜秉斐1,2,彭剑峰1,3*,胡吉国1,3,宋永会1,3,程建光2,姜诗慧1,3
1.中国环境科学研究院城市水环境科技创新基地,北京100012
2.山东科技大学化学与环境工程学院,山东 青岛266590
3.环境基准与风险评估国家重点实验室,中国环境科学研究院,北京100012
摘要为了研究高温期(18~30 ℃)、中温期(9~25 ℃)和低温期(5~17 ℃)河道滞留塘系统对城市河流污染物净化的效果,选取河道窄、水流急、水力停留时间(HRT)为0.5 d的滞留塘A,河道宽、水流缓、HRT约为2 d的滞留塘B,以及水量少、水流急、HRT仅为0.3 d,但岸滩为湿地的滞留塘C,通过对水质的监测,比较3种类型天然滞留塘在不同温度条件下对各污染物指标的净化效果。结果表明:滞留塘A对污水中的TN净化效果最佳,净化率可达12%以上;滞留塘B适合净化污水中的TP,净化率可达45%以上;滞留塘C对污水中的有机物具有较高的净化率,对CODCr的净化率可达37%以上。整体看来各滞留塘对氮磷和有机物都有一定的净化效果,其中对TP和CODCr的净化效果优于TN。同时,温度越高,不同类型滞留塘对各指标的净化效果越稳定;反之,温度越低则净化效果波动越大。
关键词河道滞留塘;城市支流;氮磷污染;水质持续净化
Effects of On-stream Detention Pond on Polluted Urban River Purification
YAN Bingfei1,2, PENG Jianfeng1,3, HU Jiguo1,3, SONG Yonghui1,3, CHENG Jianguang2, JIANG Shihui1,3
1.Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China2.College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China3.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences,Beijing 100012, China
AbstractTo analyze the purifying effect of on-stream detention pond (OSDP) on polluted urban river in high temperature period (18-30 ℃), medithermal period (9-25 ℃) and hypothermic phase (5-17 ℃), three kinds of on-stream detention ponds were adopted and monitored. The retention time (HRT) of OSDP-A with a narrow channel and a fast flowing rate is 0.5 d, the HRT of OSDP-B with a wide channel and a slow flowing rate is about 2 d, the HRT of OSDP-C possessing a bank wetland and fast flowing rate is about 0.3 d. Under different temperature conditions, the removal efficiency on different pollutants indexes of 3 kinds of natural OSDPs was compared. The results shown that in the OSDP-A, the removal efficiency of TN can reached the highest, about 12%. The OSDP-B presented the best removal capability for TP with its removal efficiency as much as 45%. However, the highest removal efficiencies of CODCrwere observed in OSDP-C, being 37%. The effects of various kinds of OSDP on the removal of nitrogen, phosphorus and organic contamination were observed, and the removal rates of TP and CODCrwere better than TN in general. Additionally, with water temperature increasing, the treat capability of different OSDPs kept relative stable; while with water temperature decreasing, their removal efficiencies presented unstable.
Key wordson-stream detention pond system; urban tributaries; nitrogen and phosphorus pollution; continuous water quality purification
河流是自然水循环中最重要的环节,也是自然界最重要的生态系统之一[1]。人类不仅傍河流而生,而且利用和开发河流,谋求社会经济的发展[2]。此外,河流系统还是非点源污染物的主要运移通道,大部分污染物通过河流进入湖泊水库,因此,污染河水的处理已经成为世人关注的焦点[3]。
我国北方地区季节性缺水明显,城市中小型河流普遍受到污染;虽然污水厂出水达到一级A排放标准,但城市河湖水体收纳的水质仍常为劣Ⅴ类,因而对河道滞留塘技术有较大的需求。目前,国内鲜有河道滞留塘技术对季节性缺水城市支流污染净化效果的研究。笔者以沈阳市白塔堡河为例,沿途选取天然河道滞留塘,着重分析河道滞留塘系统内污染物的持续净化能力。
1材料与方法
1.1试验系统
白塔堡河为浑河水系Ⅰ级支流,位于浑河中游左侧,系沈阳市的主要河流之一。其流域面积178 km2,河流总长度48.5 km,河道平均比降为1.65‰,多年平均径流量为2 790万m3[12]。
白塔堡河上中游污染主要来自农业面源和农村散排生活污水,中下游主要来自工业废水和城市生活污水。针对白塔堡河污染情况,依次在上、中、下游设置闸坝,形成3个长约1 km的河道滞留塘:滞留塘A为河道窄、水流急、HRT为0.5 d的普通河道;滞留塘B为河道宽、水流缓、HRT为2 d的砾石护坡河道;滞留塘C为水量少、水流急、HRT仅0.3 d但岸滩为湿地的河道。滞留塘A、C按上、中、下游分别选3个取样点,编号为A1、A2、A3和C1、C2、C3。滞留塘B按上、中上、中下、下游选取4个取样点,编号为B1、B2、B3、B4。
1.2试验方法
沈阳市河道滞留塘运行主要集中在4—10月,其月平均气温为11~25 ℃。试验选取平均气温为24 ℃(18~30 ℃)、17 ℃(9~25 ℃)和11 ℃(5~17 ℃)3个温度段分别表示高温期、中温期和低温期,进行不同温度对污染物净化效果的对比分析。
常规水质指标测试方法参见《水和废水监测分析方法》[13]。CODCr采用快速消解分光光度法测定;TP浓度采用钼锑抗分光光度法测定;TN浓度采用过硫酸钾消解-紫外分光光度法测定;TOC浓度采用紫外氧化-非色散红外探测法测定。各污染物指标平均去除率的计算方法为:(滞留塘污染物指标各温期总进水浓度-滞留塘污染物指标各温期总出水浓度)滞留塘污染物指标各温期总进水浓度。
2河道滞留塘对污染物的净化效果
2.1对CODCr的净化效果
白塔堡河沿程滞留塘A、B、C对CODCr的净化效果如图1所示。
图1 不同滞留塘对CODCr净化效果对比Fig.1 Comparison of different dentention pond on the CODCr removal efficiency
由图1可知,CODCr在高温期为17.19~57.18 mgL,中温期为34.12~61.93mgL,低温期为17.64~88.99 mgL;可见不同温期各采样点CODCr沿河道逐渐降低,中间略有波动,但规律较明显。不同类型滞留塘因温度和位置会影响CODCr的大小,滞留塘A的中、低温期与滞留塘B的高、中温期CODCr变化趋势分别相近;不同温期滞留塘C的沿程CODCr变化趋势则相差较大。原因是选取滞留塘河道较长,跨度大,尤其滞留塘C附近有家具厂等不同排污工厂存在,污染负荷时空变化幅度大[14]。但无论滞留塘沿途污染物浓度如何变化,进水端均大于出水端。