河道滞留塘对城市河流净化效果的影响

2016-04-12 01:28颜秉斐彭剑峰胡吉国宋永会程建光姜诗慧
环境工程技术学报 2016年2期

颜秉斐,彭剑峰,胡吉国,宋永会,程建光,姜诗慧

1.中国环境科学研究院城市水环境科技创新基地,北京 100012

2.山东科技大学化学与环境工程学院,山东 青岛 266590

3.环境基准与风险评估国家重点实验室,中国环境科学研究院,北京 100012



河道滞留塘对城市河流净化效果的影响

颜秉斐1,2,彭剑峰1,3*,胡吉国1,3,宋永会1,3,程建光2,姜诗慧1,3

1.中国环境科学研究院城市水环境科技创新基地,北京100012

2.山东科技大学化学与环境工程学院,山东 青岛266590

3.环境基准与风险评估国家重点实验室,中国环境科学研究院,北京100012

摘要为了研究高温期(18~30 ℃)、中温期(9~25 ℃)和低温期(5~17 ℃)河道滞留塘系统对城市河流污染物净化的效果,选取河道窄、水流急、水力停留时间(HRT)为0.5 d的滞留塘A,河道宽、水流缓、HRT约为2 d的滞留塘B,以及水量少、水流急、HRT仅为0.3 d,但岸滩为湿地的滞留塘C,通过对水质的监测,比较3种类型天然滞留塘在不同温度条件下对各污染物指标的净化效果。结果表明:滞留塘A对污水中的TN净化效果最佳,净化率可达12%以上;滞留塘B适合净化污水中的TP,净化率可达45%以上;滞留塘C对污水中的有机物具有较高的净化率,对CODCr的净化率可达37%以上。整体看来各滞留塘对氮磷和有机物都有一定的净化效果,其中对TP和CODCr的净化效果优于TN。同时,温度越高,不同类型滞留塘对各指标的净化效果越稳定;反之,温度越低则净化效果波动越大。

关键词河道滞留塘;城市支流;氮磷污染;水质持续净化

Effects of On-stream Detention Pond on Polluted Urban River Purification

YAN Bingfei1,2, PENG Jianfeng1,3, HU Jiguo1,3, SONG Yonghui1,3, CHENG Jianguang2, JIANG Shihui1,3

1.Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China2.College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China3.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences,Beijing 100012, China

AbstractTo analyze the purifying effect of on-stream detention pond (OSDP) on polluted urban river in high temperature period (18-30 ℃), medithermal period (9-25 ℃) and hypothermic phase (5-17 ℃), three kinds of on-stream detention ponds were adopted and monitored. The retention time (HRT) of OSDP-A with a narrow channel and a fast flowing rate is 0.5 d, the HRT of OSDP-B with a wide channel and a slow flowing rate is about 2 d, the HRT of OSDP-C possessing a bank wetland and fast flowing rate is about 0.3 d. Under different temperature conditions, the removal efficiency on different pollutants indexes of 3 kinds of natural OSDPs was compared. The results shown that in the OSDP-A, the removal efficiency of TN can reached the highest, about 12%. The OSDP-B presented the best removal capability for TP with its removal efficiency as much as 45%. However, the highest removal efficiencies of CODCrwere observed in OSDP-C, being 37%. The effects of various kinds of OSDP on the removal of nitrogen, phosphorus and organic contamination were observed, and the removal rates of TP and CODCrwere better than TN in general. Additionally, with water temperature increasing, the treat capability of different OSDPs kept relative stable; while with water temperature decreasing, their removal efficiencies presented unstable.

Key wordson-stream detention pond system; urban tributaries; nitrogen and phosphorus pollution; continuous water quality purification

河流是自然水循环中最重要的环节,也是自然界最重要的生态系统之一[1]。人类不仅傍河流而生,而且利用和开发河流,谋求社会经济的发展[2]。此外,河流系统还是非点源污染物的主要运移通道,大部分污染物通过河流进入湖泊水库,因此,污染河水的处理已经成为世人关注的焦点[3]。

我国北方地区季节性缺水明显,城市中小型河流普遍受到污染;虽然污水厂出水达到一级A排放标准,但城市河湖水体收纳的水质仍常为劣Ⅴ类,因而对河道滞留塘技术有较大的需求。目前,国内鲜有河道滞留塘技术对季节性缺水城市支流污染净化效果的研究。笔者以沈阳市白塔堡河为例,沿途选取天然河道滞留塘,着重分析河道滞留塘系统内污染物的持续净化能力。

1材料与方法

1.1试验系统

白塔堡河为浑河水系Ⅰ级支流,位于浑河中游左侧,系沈阳市的主要河流之一。其流域面积178 km2,河流总长度48.5 km,河道平均比降为1.65‰,多年平均径流量为2 790万m3[12]。

白塔堡河上中游污染主要来自农业面源和农村散排生活污水,中下游主要来自工业废水和城市生活污水。针对白塔堡河污染情况,依次在上、中、下游设置闸坝,形成3个长约1 km的河道滞留塘:滞留塘A为河道窄、水流急、HRT为0.5 d的普通河道;滞留塘B为河道宽、水流缓、HRT为2 d的砾石护坡河道;滞留塘C为水量少、水流急、HRT仅0.3 d但岸滩为湿地的河道。滞留塘A、C按上、中、下游分别选3个取样点,编号为A1、A2、A3和C1、C2、C3。滞留塘B按上、中上、中下、下游选取4个取样点,编号为B1、B2、B3、B4。

1.2试验方法

沈阳市河道滞留塘运行主要集中在4—10月,其月平均气温为11~25 ℃。试验选取平均气温为24 ℃(18~30 ℃)、17 ℃(9~25 ℃)和11 ℃(5~17 ℃)3个温度段分别表示高温期、中温期和低温期,进行不同温度对污染物净化效果的对比分析。

常规水质指标测试方法参见《水和废水监测分析方法》[13]。CODCr采用快速消解分光光度法测定;TP浓度采用钼锑抗分光光度法测定;TN浓度采用过硫酸钾消解-紫外分光光度法测定;TOC浓度采用紫外氧化-非色散红外探测法测定。各污染物指标平均去除率的计算方法为:(滞留塘污染物指标各温期总进水浓度-滞留塘污染物指标各温期总出水浓度)滞留塘污染物指标各温期总进水浓度。

2河道滞留塘对污染物的净化效果

2.1对CODCr的净化效果

白塔堡河沿程滞留塘A、B、C对CODCr的净化效果如图1所示。

图1 不同滞留塘对CODCr净化效果对比Fig.1 Comparison of different dentention pond on the CODCr removal efficiency

由图1可知,CODCr在高温期为17.19~57.18 mgL,中温期为34.12~61.93mgL,低温期为17.64~88.99 mgL;可见不同温期各采样点CODCr沿河道逐渐降低,中间略有波动,但规律较明显。不同类型滞留塘因温度和位置会影响CODCr的大小,滞留塘A的中、低温期与滞留塘B的高、中温期CODCr变化趋势分别相近;不同温期滞留塘C的沿程CODCr变化趋势则相差较大。原因是选取滞留塘河道较长,跨度大,尤其滞留塘C附近有家具厂等不同排污工厂存在,污染负荷时空变化幅度大[14]。但无论滞留塘沿途污染物浓度如何变化,进水端均大于出水端。

滞留塘A、B、C各温期对CODCr的平均净化率分别为29.18%、25.77%和37.49%,对CODCr平均净化率为B

2.2对TOC的净化效果

白塔堡河沿程滞留塘A、B、C对TOC的净化效果如图2所示。由图2可知,TOC浓度在高温期为8.40~27.59 mgL,中温期为10.38~15.57 mgL,低温期为10.83~23.24 mgL;除了采样点B3处的骤升,高、中、低温期各滞留塘TOC浓度依次沿采样点稳定呈先降后升的趋势。其中,滞留塘C的3个采样点各温期TOC浓度变化趋势最为相近。无论沿程浓度怎样变化,每个滞留塘均可保持进水端浓度大于出水端浓度,因此,对TOC有一定净化效果;但同时因各点TOC浓度波动较大,也表现出沿途有机污染物的无规律排放。

图2 不同滞留塘对TOC净化效果对比Fig.2 Comparison of different dentention pond on the TOC removal efficiency

滞留塘A、B、C各温期对TOC的平均净化率分别为12.75%、8.84%和4.65%,对TOC平均净化率为C

2.3对TN的净化效果

白塔堡河沿程滞留塘A、B、C对TN的净化效果如图3所示。

图3 不同滞留塘对TN净化效果对比Fig.3 Comparison of different dentention pond on the TN removal efficiency

由图3可知,TN浓度在高温期为6.43~18.55 mgL,中温期为4.7~10.11 mgL,低温期为5.84~16.92 mgL;可见滞留塘B、C的TN浓度在不同温期沿各采样点的变化趋势相近,规律较明显。各滞留塘出现的不同位置污染物浓度波动,可能是由环境、大气沉降以及人类活动方式的改变和沿程工厂以及生活污染物排放量不同引起的,但整体都呈下降趋势。从滞留塘A到B间TN浓度迅速下降,这与沿河河道的自然修复、微生物修复、植物修复等河体[19]自净作用有关,从滞留塘B到C的TN浓度急剧上升是由沿河污染物排放量增多导致。

滞留塘A、B、C各温期对TN的平均去除率分别为12.52%、8.84%和4.66%,对TN平均净化率为C

2.4对TP净化效果

白塔堡河沿程滞留塘A、B、C对TP的净化效果如图4所示。由图4可知,TP浓度高温期为0.12~1.51 mgL,中温期为0.15~0.74 mgL,低温期为0.15~1.83 mgL。与TN的浓度变化相比发现,N、P沿河道整体变化趋势相近。3个滞留塘TP浓度从上游到下游呈波动性,间或出现下游高于中游、中游高于上游的情况。因白塔堡河是自然河道,所选滞留塘未经人工改造,易受外界自然和人为因素干扰,但整体污染物浓度为下降趋势。

图4 不同滞留塘对TP净化效果对比Fig.4 Comparison of different dentention pond on the TP removal efficiency

滞留塘A、B、C各温期对TP的平均去除率分别为11.11%、45.57%和20.52%,对TP平均净化率为A

2.5对各指标整体净化效果

滞留塘A、B、C对各指标的净化率如图5所示。从图5可知,滞留塘A对各指标的净化效果相对稳定,对TOC以及TN的净化效果较B、C更好;滞留塘B对TP的净化效果优于其他3个指标,对CODCr的净化效果也较好;滞留塘C对CODCr的净化效果优于其他3个指标。其中,对CODCr的净化效果为C>A>B,对TOC的净化效果为A>B>C,对TN的净化效果为A>B>C,对TP的净化效果为B>C>A。整体看,3个滞留塘对CODCr以及TP的净化最为明显。

图5 不同滞留塘对各指标的净化率对比Fig.5 Comparison removal rate of different dentention pond on different properties

2.6温度对不同滞留塘各指标净化率的影响

温度对滞留塘A、B、C各指标的净化率如图6所示。从图6可以看出,高温期除TOC外滞留塘B对各污染物指标净化效果相对较好,且在3个滞留塘中对CODCr和TP的净化率相对较高,与图5结论一致;中温期滞留塘A对有机物(CODCr、TOC)净化效果相对较好,滞留塘B对TP和CODCr净化效果较TN和TOC要好,滞留塘C更适合净化CODCr;低温期除滞留塘C外,各滞留塘对CODCr净化率较其他温度下都有所提高,但对其他指标的净化率波动很大。从整体看,对北方城市支流河道来说,温度越高,不同类型滞留塘对不同指标的净化率波动越小,越稳定;温度越低,滞留塘随类型的改变对各指标的净化率受温度影响越大,变化趋势越不稳定。

图6 温度对不同滞留塘各指标净化率的对比Fig.6 Comparison removal rate of different thermophase on different dentention pond properties

3结论

(1)自然河道污水排放不具规律性,且自然条件如温度、大气沉降等,以及人为影响如污染物排放、人类活动方式等任何一个因素的改变都会对滞留塘的净化效果造成干扰。尽管如此,研究所选取的3处滞留塘对N、P和有机物等污染物都具有一定的净化效果。

(2)相比之下,A类窄急型的滞留塘对TN净化效果最佳,达12%以上;B类宽慢型的滞留塘对污水中的TP净化效果较好,可达45%以上;C类与湿地串联的滞留塘系统对有机物具有较高的净化率,尤其对CODCr的净化率可达37%以上。

(3)北方城市支流河道,温度越高,不同类型滞留塘对各指标的净化效果越稳定;反之,温度越低,则净化效果波动越大。整体上各滞留塘对CODCr以及TP的净化效果都较好。

参考文献

[1]于鲁翼,李瑶瑶,吕晓燕,等.河流生态修复技术研究进展[C]湖泊保护与生态文明建设:第四届中国湖泊论坛.合肥:中国科学技术协会,2014:271-280.

[2]钱正英,陈家琦,冯杰.人与河流的和谐发展[J].河海大学学报(自然科学版),2006(2):7-10.

QIAN Z Y,CHEN J Q,FENG J.Harmonious development of humanity and rivers[J].Journal of Hohai University(Natural Sciences),2006(2):7-10.

[4]van BUREN M A,WATT W E,MARSALEK J.Enhancing the removal of pollutants by an onstream pond[J].Water Science and Technology,1996,33(45):325-332.

[5]RUSHTON B T,BAHK B M.Treatment of storm water run off from row crop farming in Ruskin,Florida[J].Water Science and Technology,2001,44(1112):531-538.

[6]HARES R J,WARD N I.Comparison of the heavy metal content of motorway storm water following discharge into wet biofiltration and dry detention ponds along the London Orbital(M 25)Motorway[J].Science of the Total Environment,1999,235:169-178.

[7]PETTERSSON T J R.Water quality improvement in a small stormwater detention pond[J].Water Science and Technology,1998,38(10):115-122.

[8]LUNDBERG K,CARLING M,LINDMARK P.Treatment of highway runoff:a study of three detention ponds[J].Science of the Total Environment,1999,235(123):363-365.

[9]KRISHNAPPAN B G,MARSA L J,WATT W E,et al.Seasonal size distributions of suspended solids in a storm water management pond[J].Water Science and Technology,1999,39(2):127-134.

[10]van BUREN M A,WATT W E.Removal of selected urban storm water constituents by an on-stream pond[J].Journal of Environmental Planning and Management,1997,40(1):5-14.

[11]朱铭捷,胡洪营,何苗,等.水力停留时间对河流滞留塘系统水质净化效果的影响[C]环境科学与工程:王继明教授90寿辰庆贺文集.北京:中国建筑工业出版社,2005:162-166.

[12]王琳.白塔堡河防洪规划及环境影响评价建议[J].中国防汛抗旱,2015,25(1):91-93.

WANG L.Assessment of Baitapu river flood control planning and environmental impact[J].China Flood and Drought ,2015,25(1):91-93.

[13]环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002:81-190.

[14]陈玉成,李章平,李章成,等.城市地表径流污染及其全过程削减[J].水土保持学报,2004,18(3):133-136.

CHEN Y C,LI Z P,LI Z C,et al.Contamination of urban surface runoff and its whole course in imization[J].Journal of Soil and Water Conservation,2004,18(3):133-136.

[15]袁东海,任全进,高士祥,等.几种湿地植物净化生活污水COD、总氮效果比较[J].应用生态学报,2004,15(12):2337-2341.

YUAN D H,REN Q J,GAO S X,et al.Purification efficiency of several wetland macrophytes on COD and nitrogen removal from domestic sewage[J].Chinese Journal of Applied Ecology,2004,15(12):2337-2341.

[16]邓仕槐,李远伟,李宏娟,等.姜花在人工湿地中脱氮除磷研究[J].农业环境科学学报,2007,26(增刊1):249-251.

DENG S H,LI Y W,LI H J,et al.Removal of nitrogen and phosphorus byHedychiumgardneranumin a constructed wetland[J].Journal of Agro-Environment Science,2007,26(Suppl 1):249-251.

[17]奉小忧,宋永会,曾清如,等.不同植物人工湿地净化效果及基质微生物状况差异分析[J].环境科学研究,2011,24(9):1035-1041.

FENG X Y,SONG Y H,ZENG Q R,et al.Purification effects and differences in substrate microorganism status in constructed wetlands vegetated with different plants[J].Research of Environmental Sciences,2011,24(9):1035-1041.

[18]贺锋,吴振斌.水生植物在污水处理和水质改善中的应用[J].植物学通报,2003,20(6):641-647.

HE F,WU Z B.Application of aquatic plants in sewage treatment and water quality improvement[J].Chinese Bulletin of Botany,2003,20(6):641-647.

[19]李轶,李晶,胡洪营,等.难降解有机物污染底质原位修复技术研究进展[J].生态环境,2008,17(6):2482-2487.

LI Y,LI J,HU H Y,et al.Review on in-situ remediation of sediments contaminated by refractory organic pollutants[J].Ecology and Environment,2008,17(6):2482-2487.

[20]GREEN M,FRIEDLER E,SAFRAI S.Enhanging nitrification in vertical flow constructed wetland utilizing a passive air pump[J].Water Research,1998,32(12):3513-3520.

[21]SAEED T,SUN G.A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands:dependency on environmental parameters,operating conditions and supporting media[J].Journal of Environmental Management,2012,112:429-448.

[22]SPIELES D J,MITSCH W J.The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands:a comparison of low-and high-nutrient riverine systems[J].Ecological Engineering,1999,14(12):77-91.

[23]KADLEC R H,KNIGHT R L.Treatment wetlands[M].Florida:CRC Lewis Publisher,1996:1-5.

[24]VYMAZAL J.Removal of nutrients in various types of constructed wetland[J].Science of the Total Environment,2007,380(123):48-65.

[25]卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报,2006,26(8):2670-2677.

LU S Y,JIN X C,YU G,et al.Nitrogen removal mechanism of constructed wetland[J].Acta Ecologica Sinica,2006,26(8):2670-2677.

[26]刘慎坦,王国芳,谢祥峰,等.不同基质对人工湿地脱氮效果和硝化及反硝化细菌分布的影响[J].东南大学学报(自然科学版),2011,41(2):400-405.

LIU S T,WANG G F,XIE X F,et al.Effect of matrix on denitrification efficiency and distribution of nitrifying and denitrifying bacteria in constructed wetlands[J].Journal of Southeast University(National Science Edition),2011,41(2):400-405.

[27]卢少勇,张彭义,余刚,等.人工湿地处理农业径流的研究进展[J].生态学报,2007,27(6):2627-2635.

LU S Y,ZHANG P Y,YU G,et al.Research progress of constructed wetland treating agricultural runoff[J].Acta Ecologica Sinica,2007,27(6):2627-2635.

[28]凌子微,仝欣楠,李亚红,等.处理低污染水的复合人工湿地脱氮过程[J].环境科学研究,2013,26(3):320-325.

LING Z W,TONG X N,LI Y H,et al.Study on nitrogen removal process of treatments for slightly contaminated water on hybrid constructed wetlands[J].Research of Environmental Sciences,2013,26(3):320-325.

[29]朱铭捷,胡洪营,何苗,等.河道滞留塘系统对污染河水中氮磷的去除特性[J].生态环境学报,2006,15(1):11-14.

ZHU M J,HU H Y,HE M,et al.NH3-N and TP removal performance of polluted river water with on-stream detention pond system[J].Ecology and Environment,2006,15(1):11-14. ○

梁欢欢,安达,王月,等.基于OAT-GIS技术的地下水污染风险评估指标权重敏感性分析[J].环境工程技术学报,2016,6(2):139-146.

LIANG H H, AN D, WANG Y, et al.Index weight sensitivity analysis for groundwater pollution risk assessment based on OAT-GIS[J].Journal of Environmental Engineering Technology,2016,6(2):139-146.

中图分类号:X522

文章编号:1674-991X(2016)02-0133-06

doi:10.3969j.issn.1674-991X.2016.02.020

作者简介:颜秉斐(1989—),女,硕士,主要从事水环境修复及风险控制技术,ybf201506@163.com*责任作者:彭剑峰(1977—),男,研究员,博士,主要从事水环境修复及风险控制技术,pjf1995@163.com

基金项目:国家水体污染控制与治理科技重大专项(2012ZX07202-005)

收稿日期:2015-10-15