基于心率变异性的联合收割机驾驶员疲劳分析与评价

2016-04-09 03:16祝荣欣王金武周文琪潘振伟多天宇东北农业大学工程学院哈尔滨50030黑龙江科技大学机械工程学院哈尔滨50022
农业工程学报 2016年1期
关键词:联合收割机心率变异性农业机械

祝荣欣,王金武,唐 汉,周文琪,潘振伟,王 奇,多天宇(.东北农业大学工程学院,哈尔滨50030;2.黑龙江科技大学机械工程学院,哈尔滨50022)



基于心率变异性的联合收割机驾驶员疲劳分析与评价

祝荣欣1,2,王金武1※,唐汉1,周文琪1,潘振伟1,王奇1,多天宇1
(1.东北农业大学工程学院,哈尔滨150030;2.黑龙江科技大学机械工程学院,哈尔滨150022)

摘要:为探究联合收割机驾驶员的疲劳变化规律,应用RM6240C多通道生理信号采集系统,在约翰迪尔S660型联合收割机上进行了驾驶疲劳监测试验,采集了10名驾驶员120 min收获驾驶的心电数据。选取非线性动力学指标样本熵作为疲劳监测的特征参数,分析样本熵随驾驶时间的变化规律,确定驾驶疲劳发生时间段,对比不同作业环节的疲劳程度。结果表明:样本熵值随驾驶时间的增加呈下降趋势;样本熵值与主观驾驶疲劳程度的皮尔逊相关系数为-0.824,两者显著负相关;根据样本熵值判定,驾驶疲劳于50 min后开始出现,100 min后疲劳程度加深;转向行驶阶段比直线行驶阶段的驾驶疲劳程度高。基于样本熵的驾驶疲劳判定方法可客观的反映联合收割机驾驶员的体力和精神疲劳状况。

关键词:农业机械;联合收割机;监测;驾驶疲劳;心率变异性;样本熵

祝荣欣,王金武,唐汉,周文琪,潘振伟,王奇,多天宇.基于心率变异性的联合收割机驾驶员疲劳分析与评价[J].农业工程学报,2016,32(01):77-83.doi:10.11975/j.issn.1002-6819.2016.01.010 http://www.tcsae.org

Zhu Rongxin, Wang Jinwu, Tang Han, Zhou Wenqi, Pan Zhenwei, Wang Qi, Duo Tianyu.Analysis and evaluation of combine harvester driver fatigue based on heart rate variability[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(01): 77-83.(in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.01.010 http://www.tcsae.org

0 引言

联合收割机是农业生产中一种重要的收获机械。与交通运输车辆相比,联合收割机作业环境较差,颠簸严重,且驾驶员连续工作时间长,劳动强度大,使驾驶员容易产生生理和心理上疲劳,驾驶机能下降,影响工作效率。目前,中国在农业机械驾驶员疲劳方面的研究尚处于起步阶段,多数生产企业注重于产品性能和质量的提高,较少考虑驾驶舒适性;科研机构在农机驾驶员疲劳领域的研究成果也较少。赵永超根据表面肌电信号(surface electromyography,sEMG)的变化规律描述拖拉机倒车作业驾驶员颈部疲劳状态,发现积分肌电值、平均功率频率、小波分解系数等特征量在疲劳前后存在显著性差异,头部转动角度对积分肌电值和平均功率频率有明显影响[1-2]。孔德刚以心率(heart rate,HR)和作业时间综合评价方法对比了机械化播种作业中驾驶进口大功率和国产拖拉机的劳动强度和最长作业时间[3]。田晓峰等基于HR和sEMG研究了振动对拖拉机驾驶员全身及腰部疲劳的影响,分析HR和腰部sEMG特征值随驾驶时间、振动频率和振动加速度增加的变化规律[4-6]。

目前国内学者多对拖拉机驾驶员的疲劳进行分析和评价,对于联合收割机等其他农机的驾驶疲劳研究较少,且上述研究多在模拟驾驶平台上采集驾驶员的生理信号,虽然可排除一些干扰因素,但与实际驾驶获得的结果有所差别。评价驾驶疲劳的手段主要有HR和sEMG,这2种生理信号监测法具有对驾驶影响较小,对测量者无伤害的优点,在疲劳评价领域有所应用[7-14]。研究表明,精神负荷的增加对HR信号的影响不明显,多将HR作为衡量体力疲劳的指标,不能较好地反映体力和脑力综合的驾驶疲劳状况[15-16]。对于sEMG,虽可无损伤的实时反映局部肌肉活动水平和功能状态,但同样无法反映精神疲劳的影响。心率变异性(heart rate variability,HRV)是心电信号的另一重要分析手段,通过将每个心动周期的心率差异数量化来评价自主神经性活动,定量评估工作负荷中心脏交感和迷走神经张力及其平衡性,可同时表达体力疲劳和精神疲劳对人体的影响,已有研究使用HRV反映人在驾驶工作中综合疲劳程度的变化[17-20],该方法预期能够更为科学地描述联合收割机驾驶员的疲劳变化规律。HRV是典型的非线性时间序列,非线性动力学方法有助于精确捕捉HRV信号的本质特征,在众多非线性分析方法中样本熵计算方便快捷,适用于试验获得的短时数据,因此选取样本熵作为驾驶疲劳分析的特征参数。

本文基于HRV序列,通过主观和客观方法探究联合收割机驾驶员的疲劳产生与变化机理,分析驾驶员在实际收获驾驶中样本熵随驾驶时间的变化规律,探讨样本熵与驾驶疲劳程度之间的联系,期望对联合收割机驾驶疲劳进行客观的判断与评测,为进一步开展农机驾驶疲劳实时检测技术的研究提供参考。

1 基本原理

1.1HRV及其研究方法

心脏搏动在体表形成电位变化从而形成心电信号(electrocardiogram,ECG)[21],正常ECG波形如图1所示,每个心动周期包括P波、P-R间期、QRS波、S-T段、T波、Q-T间期和U波7个阶段,QRS波群中的R波波形陡峭,幅度高,变化最剧烈,常作为ECG特征检测的标志。相邻2个R波之间的时间间隔称为R-R间期,表示心脏逐次心跳的时间差距。健康人体逐次心跳间期存在微小的变异,这种变异称为HRV,具体体现为连续心跳间R-R间期时间值的微小涨落,这种微小涨落是由于脑的高级神经活动、中枢神经系统的自发性节律活动、呼吸活动以及由压力、化学感受器传入的心血管反射活动等因素对心脏交感神经和副交感神经的综合调节作用而产生的,蕴含了有关心血管调节的大量信息,可作为心血管疾病的早期诊断、病中监护及预后评估的辅助工具,同时HRV序列也可定量评估驾驶环境中在不同负荷水平和疲劳程度下心脏交感神经和迷走神经活动的紧张性、均衡性及其对心血管系统活动的影响,综合反映体力和脑力负荷产生疲劳的状况[22]。

图1 心电信号波形图Fig.1 Waveform of ECG

HRV的分析方法有时域分析法、频域分析法和非线性动力学分析法。时域分析法是通过统计学离散趋势分析法的指标来表达R-R间期的变化[23],此种方法计算简单,但无法表达出数据中蕴含的时间规律。频域分析法是应用FFT(fast fourier transformation)的经典谱估计或自回归AR(auto regressive)模型的现代谱估计方法获得R-R间期变化曲线的功率谱密度,并按不同频段描述HRV信号能量的分布情况[24],该法虽然能反映交感神经、副交感神经活动对心率的调制作用,但将R-R间期时间序列看作是平稳的离散信号,尚属于线性分析范畴。非线性分析法是从基于混沌和分形理论的角度,应用回归映象(散点图)、分形维数、复杂度、熵等非线性动力学特征量分析自主神经系统的复杂性,探究HRV信号时间顺序中的有用信息。HRV信号被普遍认为是混沌或含有混沌成分的非线性、非平稳信号[25-26],具有非周期性和非随机性,用非线性动力学分析法研究HRV信号,没有丢失信号中所包含的非线性信息,能够反映心血管系统调节模式的变化,并能较完整地描述包含非线性成份的HRV信号本质特征。

1.2样本熵

样本熵是一种时间序列复杂程度的度量方法[27],是在近似熵算法的基础提出的,这种改进的算法具有方法简单、运算快速、抗干扰能力强、适合于短时数据等优点,更适合心电等生物时间序列的分析,广泛应用在生物医学工程领域。心脏被认为是一个复杂的非线性动力学系统,具有混沌特征,其交感神经和迷走神经相互调节的有序程度可通过HRV序列的复杂度来体现。研究表明[26],样本熵可表征HRV序列的复杂程度,其数值大小能够反映HRV序列复杂度的高低。样本熵值越大,HRV序列的复杂度越大,说明人体心脏的交感神经与迷走神经相互调节的能力高,自身调节能力强,能够更好地随着外界环境的变化调整自己的状态。样本熵具体计算步骤如下:

已知长度为N的R-R间期时间序列{x(i),i=1,2,…,N},从任意点开始,任意选取连续的m个数据,构造一组m维向量Xm(i),记为Xm(i)=[x(i),x(i+1),…,x(i+m-1)],其中i=1,2,…,N-m+1。

定义向量Xm(i)和Xm(j)之间的距离d为向量对应元素之差的最大绝对值,即

HRV信号的样本熵定义为:

在上述计算过程中,m为重构相空间的维数,称为嵌入维数,前期研究建议选择m=2[28];r为任意给定的距离,称为相似容限,经验得出r=(0.1-0.25)Std(Std表示数据的标准差),这里选择r=0.15 Std。

2 试验方案与数据处理

2.1试验对象与设备

为避免年龄与疾病等外部条件对心率变异性的影响,驾驶疲劳监测试验选取黑龙江省农垦总局北安分局格球山农场10名职工(男性)作为试验样本,年龄(34.2±7.39)岁,身高(173.6±4.16)cm,质量(72.5±10.6)kg,且具有5a以上联合收割机的驾驶经验。所有样本均身体健康,无心脑血管疾病,睡眠充足,且在试验前无疲劳症状,情绪稳定,不饮含咖啡因、酒精的饮料。

试验机型选择约翰迪尔S660型联合收割机如图2a所示。试验测试仪器为RM-6240C多通道生理信号采集处理系统,由成都仪器厂生产,共有4个通道和1个12导联ECG接口,适用于对人体心电、血压、肌张力等体表生理信号的多道同步检测、记录和分析处理。心电信号采样频率为1 Hz~100 kHz,扫描速度为0.02~20 cm/s,灵敏度为20 μV~10 mV,仪器可通过参数设置实现心电信号的高通和低通滤波,同时具备强大的数字滤波功能,供试验后处理波形时使用。

图2 驾驶疲劳监测试验现场Fig.2 Test site in monitoring experiment of driver fatigue

2.2试验条件与方法

收获作业在黑龙江省农垦总局北安分局格球山农场,收获作物为大豆。测试时间为2014年10月1日—10 月7日,测试期间气温0~10℃。考虑时间和天气等因素对试验的影响,选择天气晴朗的工作日,上午8:00—11:00点之间进行试验。试验过程中驾驶室温度变化不大,对测试结果不会产生影响。

试验前对被试者贴电极片处皮肤进行去死皮和去油脂等预处理工作。采用三电极的方式测量心电信号,将电极片贴在左腋前线第四肋间、右侧锁骨中点下缘和剑突下偏右3处[29],并分别与正极、负极和参考极导线连接,如图2b所示。设置多通道生理信号采集系统的采样频率为1 kHz,扫描速度为0.2 cm/s,灵敏度为1 mV。

在收割地块起点处,被试者填写试验前主观疲劳调查问卷,并静坐在驾驶室中5 min,获得驾驶前安静时的心电数据,作为基础数据;然后被试者开始收获驾驶,时速保持在8~10 km/h,测试时间为120 min,每隔20 min填写一次主观疲劳调查问卷,多通道生理信号采集仪实时采集心电信号(如图3所示),并存储在计算机中,供后续数据处理时使用;试验结束后再次填写主观疲劳调查问卷。

图3 心电信号示例(直行路段)Fig.3 ECG signal sample(straight section)

2.3数据预处理

试验结束后,将驾驶过程采集的120 min心电数据进行分段处理,每段10 min,共12段。对每段心电信号采用bior6.8小波进行9尺度的小波分解消除噪声,除去工频干扰和基线漂移;然后进行心电信号的QRS波群检测,标定R波的峰值点;最后计算相邻R波峰值点的时间间隔,得到每段信号的R-R间期数据。

3 试验结果与分析

3.1驾驶疲劳主观评价

采用被试自我疲劳评价的方式进行疲劳主观评测。调查问卷的驾驶疲劳程度等级划分为7级:非常舒服、比较舒服、有点舒服、无影响、有点疲劳、比较疲劳、非常疲劳,对应的分值为:-3、-2、-1、0、1、2、3。每等级对应的疲劳状态特征如表1所示。试验中每个样本共填写7份主观疲劳调查问卷,对应时刻为0、20、40、60、80、100、120 min。根据调查问卷的结果求得各个时刻主观疲劳程度得分的平均值,如图4所示。

表1 驾驶疲劳等级状态特征Table 1 Characteristics of driver fatigue grade

图4 主观疲劳程度调查结果Fig.4 Result of subjective fatigue investigation

由图4可知,随着时间的增加,主观疲劳程度逐渐加深,并且呈现先快后慢再快的趋势。0~40 min曲线上升较快,说明疲劳程度积累迅速,40~100 min疲劳程度积累较慢,而100~120 min疲劳程度积累加快。从调查问卷可得,60 min时大多数被试者(80%)感觉到有点疲劳,100 min 时90%的被试者感觉到比较疲劳,120 min时90%的被试者感觉到非常疲劳。

3.2样本熵变化趋势分析

将获得的R-R间期数据按样本熵求解过程计算得出各个样本各时段的样本熵值,并取每个时段的平均值。收获驾驶过程中样本熵均值的变化趋势如图5所示。

图5 样本熵变化趋势图Fig.5 Variation trend of SampEn

从图5可以看出,样本熵随驾驶时间的增加呈下降趋势,表明HRV序列的复杂度降低,随着驾驶疲劳程度的加深,驾驶员心脏调控变化的能力减弱,对外界环境变化的辨别与适应能力降低,根据收获地块的不同及各种仪表刺激的差异来调整自身状态的能力下降。但是曲线在驾驶初期震荡较大,这是由于驾驶员初期对作业地形、作物含水量等收获条件不熟悉,需要做复杂的调试工作,情绪较紧张,因此样本熵下降较快;随着驾驶时间的推移,驾驶条件逐渐适应,曲线有所回升,波动减小。

3.3样本熵与疲劳程度相关性分析

为探究样本熵的变化与驾驶疲劳程度的关系,对10~20、30~40、50~60、70~80、90~100、110~120 min时间段的样本熵值和第2~6次主观疲劳程度得分进行相关性分析,利用SPSS18.0软件,计算皮尔逊相关系数。从结果可知,样本熵值与主观驾驶疲劳的皮尔逊相关系数为-0.824,显著性水平为0.006,说明两者之间存在显著的线性关系且相关程度高。在联合收割机驾驶过程中,HRV序列的样本熵值对驾驶员疲劳的反应较为敏感,可以反应驾驶疲劳程度。

3.4驾驶疲劳发生时间的确定

通过上述样本熵反映驾驶疲劳程度的有效性验证得知,样本熵指标可以反映驾驶疲劳,即当某一时段样本熵值与对比时段样本熵值出现显著性变化时,说明该时段驾驶产生疲劳。

首先采用单样本K-S检验方法对试验获得的各样本各时段样本熵值的分布规律进行检验,结果表明样本熵值(样本数为120)为正态分布(双侧检验Z=0.718,显著性概率P=0.639>0.05)。然后选取安静时段的样本熵值作为参考数据,记为s0,将该时段与其他12个时段的样本熵值(记为s1,s2,...,s12)进行配对T检验,分析配对样本的平均数是否有差异,结果如表2所示。

从表2可以看出,随着时间的变化,t值有逐渐变大的趋势,这说明,各时段与安静时段样本熵值的差异逐渐变大。根据配对T检验的结果可知,50 min时样本熵值开始出现显著性差异(显著性水平P<0.05),说明驾驶开始产生疲劳,100 min后,样本熵值的显著性差异非常明显(显著性水平P<0.01),说明驾驶疲劳程度进一步加深。样本熵值平均数差异性检验表明50 min后产生疲劳,而驾驶疲劳主观评测结果表明驾驶员60 min后产生疲劳,这主要是由于主观疲劳评测的间隔时间与心电信号分段处理的时间不同造成的,考虑主观疲劳评测对驾驶有影响,且较短时间主观感受差别不大,因此填写调查问卷的时间与信号分段处理时间选择不同。

表2 样本熵值配对样本检验结果Table 2 Results of paired-samples T test for SampEn

3.5不同作业环节疲劳程度对比

联合收割机收获驾驶包括直线收获行驶、田边转向行驶2个阶段,直线收获行驶阶段驾驶员需要使割台对齐垄台,保持收割机直线行驶,而田边转向行驶阶段驾驶员需要完成升降割台、收割机转向、对齐垄台,操作过程相对较多。

将收获驾驶过程采集的心电数据按照作业环节进行分段,分成直行和转向交替的若干个阶段,按照前述处理过程计算各段的R-R间期数据和样本熵,并分别取所有直行和转向阶段样本熵的平均值,对两者进行比较。为判断直行和转向阶段样本熵平均数与安静时段是否有差异,分别将直行和转向阶段的样本熵值(记为ss和st)与安静时段的样本熵值进行配对T检验,结果如表3所示。

表3 不同作业环节样本熵值配对T检验结果Table 3 Results of paired-samples T test for SampEn in different sections

联合收割机驾驶员直线行驶和转向行驶HRV序列的样本熵均值不同,直线行驶阶段的样本熵均值为1.534±0.27,转向行驶阶段的样本熵均值为1.312±0.14,转向阶段的样本熵均值比直行阶段的小,说明在转向阶段心脏HRV序列的复杂度比直行阶段低,驾驶员心脏调控变化的能力略弱,情绪紧张,操作复杂费力。此外由表3可知,直行阶段与安静时段样本熵值无显著性差异(显著性水平P>0.05),转向阶段与安静时段样本熵值存在显著性差异(显著性水平P<0.05),表明与安静时段相比,转向行驶阶段产生驾驶疲劳,劳动强度较大,而直线行驶阶段的疲劳不明显,转向行驶阶段比直线行驶阶段驾驶疲劳程度高。

4 结论

1)基于HRV序列分析驾驶员在收获驾驶中样本熵随驾驶时间的变化规律可知,随着疲劳程度的增加,样本熵值呈下降趋势,驾驶员对外界环境变化的辨别与适应能力降低。

2)样本熵值与主观驾驶疲劳程度的皮尔逊相关系数为-0.824,两者显著相关,可以反映驾驶疲劳;根据驾驶过程样本熵值判定,联合收割机驾驶疲劳于50 min后开始出现,100 min后疲劳程度加深;转向行驶阶段的样本熵均值比直行行驶阶段的小,且与安静时段存在显著差异,转向行驶阶段比直线行驶阶段的驾驶疲劳程度高。

3)与驾驶疲劳主观评测法相比,根据样本熵值的变化判定疲劳的方法,可以客观的反映联合收割机驾驶疲劳产生和加深的时段,有效地分析与评价联合收割机驾驶疲劳的产生和变化规律。

[参考文献]

[1]赵永超,孔德刚.拖拉机驾驶员颈部疲劳的肌电评价[J].农业工程学报,2010,26(3):146-150.Zhao Yongchao, Kong Degang.Evaluation of tractor drivers’neck fatigue by surface electromyogram[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2010, 26(3): 146-150.(in Chinese with English abstract)

[2]赵永超,孔德刚,刘立意.基于表面肌电信号的拖拉机驾驶员颈部疲劳研究[J].农机化研究,2010,32(2):129-132.Zhao Yongchao, Kong Degang, Liu LiYi.Study on the fatigue of tractor drivers' neck based on SEMG[J].Journal of Agricultural Mechanization Research, 2010, 32(2): 129-132.(in Chinese with English abstract)

[3]孔德刚,张帅,朱振英,等.机械化播种作业中驾驶员疲劳分析与评价[J].农业机械学报,2008,39(8):74-78.Kong Degang, Zhang Shuai, Zhu Zhenying, et al.Driver's fatigue evaluation and analysis in mechanized sowing work [J].Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(8): 74-78.(in Chinese with English abstract)

[4]田晓峰,孔德刚,刘立意,等.长时间振动对拖拉机驾驶员腰部疲劳的影响研究[J].农机化研究,2011,33(2):193-196.Tian Xiaofeng, Kong Degang, Liu LiYi, et al.Study on the influence of long-time vibration to tractor driver' low back fatigue[J].Journal of Agricultural Mechanization Research, 2011, 33(2): 193-196.(in Chinese with English abstract)

[5]刘军,孔德刚,刘立意,等.拖拉机座椅振动对驾驶员腰部疲劳影响研究[J].农机化研究,2011,33(1):53-56.Liu Jun, Kong Degang, Liu LiYi, et al.The study on the effect of tractor seat vibration to driver lumbar fatigue[J].Journal of Agricultural Mechanization Research, 2011, 33(1): 53-56.(in Chinese with English abstract)

[6]苏锦涛,孔德刚,李紫辉,等.拖拉机座椅振动加速度对驾驶疲劳的影响[J].农机化研究,2011,33(1):161-164.Su Jintao, Kong Degang, Li Zihui, et al.The impact of tractor seats vibration acceleration on drivers' driving fatigue[J].Journal of Agricultural Mechanization Research, 2011, 33(1): 161-164.(in Chinese with English abstract)

[7]付荣荣,王宏,王琳,等.基于无线体域网中多生理信号驾驶疲劳检测[J].东北大学学报(自然科学版),2014,35(6):850-853.Fu Rongrong, Wang Hong,Wang Lin, et al.Detection of driver fatigue based on multi-physiological signals in wireless body area network[J].Journal of Northeastern University(Natural Science), 2014, 35(6): 850 -853.(in Chinese with English abstract)

[8]焦昆,李增勇,陈铭,等.模拟驾驶过程中腰部疲劳的表面肌电信号分析[J].人类工效学,2004,10(3):10-12.Jiao Kun, Li Zengyong, Chen Ming, et al.sEMG analysis of lumbar fatigue during simulated driving[J].Chinese Journal of Ergonomics,2004,10(3):10-12.(in Chinesewith Englishabstract)

[9]罗仕鉴.基于生物学反应的驾驶舒适度研究[D].杭州:浙江大学,2005.Luo Shijian.Study On Driving Comfort Based On Biological Response[D].Hangzhou: Zhejiang University, 2005.(in Chinese with English abstract)

[10] Chen Xiaojing, Qi Chunhua, Zhu Shoulin.On study of driver’s shoulder fatigue in manual and automatic on grassland highway [J].Advanced Materials Research,2014, 3470(1030): 2054-2060.

[11] Hostens I,Ramon H.Assessment of muscle matigue in low level monotonous task performance during car driving [J].Journal of Electromyography and KineSiology, 2005, 15(2): 266-274.

[12]张祖怀.基于人体生理信号的驾驶疲劳研究方法及其应用[D].哈尔滨:哈尔滨工业大学,2006.Zhang Zuhuai.A Research Method for Driving Fatigue Based on Physiological Signal and Its Application[D].Harbin: Harbin Institute of Technology, 2006.(in Chinese with English abstract)

[13]徐冬青.草原公路环境下连续驾驶时间对疲劳的影响研究[D].呼和浩特:内蒙古农业大学,2011.Xu Dongqing.Study on the Effect of the Continuous Driving Time on the Driving Fatigue Under Environment of Prairie Highway[D].Hohhot:InnerMongoliaAgriculturalUniversity,2011.(in Chinese with English abstract)

[14]王琳虹,李世武,高振海,等.基于粒子群优化与支持向量机的驾驶员疲劳等级判别[J].哈尔滨工业大学学报,2014,46 (12):102-107.Wang Linhong, Li Shiwu, Gao Zhenhai, et al.A driver fatigue level recognition model based on particle swarm optimization and support vector machine[J].Journal of Harbin Institute of Technology, 2014, 46(12): 102-107.(in Chinese with English abstract)

[15] Lee D H,Park K S.Multivariate analysis of mental and physical load components in sinus arrhythmia scores [J].Ergonomics.1990,33(1):35-47.

[16]董占勋,孙守迁,吴群,等.心率变异性与驾驶疲劳相关性研究[J].浙江大学学报(自然科学版),2010,44(1):46-50.Dong Zhanxun, Sun Shouqian, Wu Qun, et al.Study of correlation between heart rate variability and driving fatigue[J].Journal of Zhejiang University(Natural Science), 2010, 44(1): 46-50.(in Chinese with English abstract)

[17] Jiao Kun,Li Zengyong,Chen Ming.Effect of different vibration frequencies on heart rate variability and driving fatigue in healthy drivers[J].Int Arch Occup Environ Health,2004,77(5):205-212.

[18]付川云.疲劳状态下驾驶人生理及眼动特征研究[D].哈尔滨:哈尔滨工业大学,2011.Fu Chuanyun.Research on Physiological and Eye Movement Characteristics of Driver Under Fatigue Condition [D].Haerbin: Harbin Institute of Technology, 2011.(in Chinese with English abstract)

[19]杨程程.驾驶疲劳检测研究[D].沈阳:辽宁师范大学,2014.Yang Chengcheng.The Study on the Detection of Driving Fatigue[D].Shengyang: Liaoning Normal University, 2014.(in Chinese with English abstract)

[20] Zuz.ewicz K, Roman-Liu D, Konarska M, et al.Heart rate variability(HRV)and muscular system activity(EMG)in cases of crash threat during simulated driving of a passenger car[J].International Journal of Occupational Medicine and Environmental Health,2013,26(5):710-723.

[21]宁新宝.生物医学电子学[M].长沙:湖南科学技术出版社,1988:20-30.

[22]霍铖宇.基于庞加莱散点图和递归图的心率变异性研究[D].南京:南京大学,2014.Huo Chengyu.The Study of Heart Rate Variability Based on Poincare Scatterplot and Recursive Figure[D].Nanjing: Nanjing University, 2014.(in Chinese with English abstract)

[23]董红生,张爱华,邱天爽,等.基于Hilbert谱的心率变异信号时频分析方法[J].仪器仪表学报,2011,32(2):271-278.Dong Hongsheng, Zhang Aihua, Qiu Tianshuang, et al.Timefrequency analysis method of heart rate variability signal based on the Hilbert spectrum [J].Chinese Journal of Scientific Instrument, 2011, 32(2): 271-278.(in Chinese with English abstract)

[24]彭葳,王笃明,尹爽,等.驾驶疲劳的心电和肌电信号分析[J].人类工效学,2013,19(1):24-27.Peng Wei, Wang Duming, Yin Shuang, et al.Exploring the characters of physiological signals for fatigued drivers [J].Chinese Journal of Ergonomics, 2013, 19(1): 24-27.(in Chinese with English abstract)

[25]吴群.基于心电信号的驾驶疲劳检测方法研究[D].杭州:浙江大学,2008.Wu Qun.An ECG-based Approach to Driving Fatigue Detection [D].Hangzhou: Zhejiang University, 2008.(in Chinese with English abstract)

[26]刘红夺儿,朱逸,湛萍,等.短时非线性方法用于心率变异性分析[J].中国生物医学工程学报,2015,34(2):229-236.Liu Hongduoer, Zhu Yi, Zhan Ping, et al.The application of short-term nonlinear methods to heart rate variability analysis[J].Chinese Journal of Biomedical Engineering, 2015, 34(2): 229-236.(in Chinese with English abstract)

[27] Richman J S,Moorman J R.Physiological time-series analysis using approximate entropy and sample entropy[J].American Journal of Physiology:Heart and Circulatory Physiology, 2000, 278(6): 2039-2049.

[28]赵晓华,许士丽,荣建,等.基于ROC曲线的驾驶疲劳脑电样本熵判定阈值研究[J].西南交通大学学报,2013, 48(1): 178-183.Zhao Xiaohua, Xu Shili, Rong Jian, et al.Discriminating threshold of driving fatigue based on the electroencephalography sample entropy by receiver operating characteristic curve analysis[J].Journal of Southwest Jiaotong University, 2013, 48 (1): 178-183.(in Chinese with English abstract)

[29]潘大明.心电图学教程[M].杭州:浙江大学出版社,2008:10-15.

Analysis and evaluation of combine harvester driver fatigue based on heart rate variability

Zhu Rongxin1, 2, Wang Jinwu1※, Tang Han1, Zhou Wenqi1, Pan Zhenwei1, Wang Qi1, Duo Tianyu1
(1.Engineering Institute, Northeast Agricultural University, Harbin 150030, China; 2.Mechanical Engineering Institute, Heilongjiang University of Science and Technology, Harbin 150022, China)

Abstract:The study on combine harvester driver fatigue is important and necessary to reduce the accidents, improve the operation efficiency and protect the health of the driver.In order to explore the change rule of combine harvester driver fatigue, monitoring experiment of combine harvester driver fatigue was carried out with John Deere S660 at Gegiushan farm of Bei'an Agricultural Reclamation Administration in Heilongjiang province from October 1, 2014 to October 7, 2014.The experiment was performed in sunny day during the forenoon to eliminate the influences of time and weather on the experiment.The crops harvested were soybean, and the conditions of test land were similar.The noise of cab was 95 dB(A), of which temperature basically remain unchanged.The monitoring equipment was RM-6240C multi-channel physiological signal acquisition processing system produced by Chengdu Instrument Factory with four channels and one interface of 12 lead ECG, which is suitable for multi-channel synchronous detection, records and analysis of human body physiological signal such as Electrocardiogram(ECG), blood pressure, muscle tension.Before the test, skin preparation work was carried out such as removing dead skin, oil and grease.ECG signals were measured by three electrodes method; The electrodes were pasted on three places, for instance between the fourth rib on the left armpit front, below the right clavicle middle and the lower right of xiphoid process, which were connected with the positive(red), the negative(green)and the reference (black)wire respectively.The sampling frequency of multi-channel physiological signal acquisition system was 1 kHz, scanning speed 0.2 cm/s, sensitivity 1 mV.The ECG data of 10 male drivers sitting quietly in the cab were recorded for 5 minutes before harvesting(marked as quiet segment), at the same time subjective fatigue questionnaire were finished.Then the ECG data of drivers were recorded for 120 minutes when combine harvester running at the speed of 8~10 km/h.Subjective fatigue questionnaire were filled in every 20minutes.The ECG data collected in driving were divided into 12 parts with 10 minutes per part.The ECG data both of quiet segment and 12 parts were denoised and detected for R waveform by the way of Wavelet Transform, and then the R-R interval value of each part was computed.Nonlinear dynamic index SampEn was selected as the characteristic parameter of fatigue testing which characterizes the complexity of heart rate variability.Firstly, the change curve of SampEn along with driving time and the scores of subjective fatigue degree at specified moment were achieved, and correlation analysis was researched between SampEn and scores of subjective fatigue degree.Secondly, driver fatigue occurred time was determined by the results of paired-samples T test of SampEn between quiet segment and other 12 parts.Finally, degrees of fatigue in straight section and that of turn section were compared by the results of paired-samples T test of SampEn between each section and quiet segment respectively.The results showed that the average values of SampEn significantly declined with the increase of the driving time.Pearson correlation coefficient between SampEn and subjective fatigue score was -0.824, which showed that their relationship was negatively significant.According to the results of paired-samples T test of SampEn between quiet segment and other 12 parts, the values of SampEn of the fifth part was significantly different from that of quiet segment(P<0.05), and the values of SampEn of tenth part was very significantly different from that of quiet segment(P<0.01), which indicated that combine harvester driver fatigue began to appear after 50 minutes, and deeped after 100 minutes.The values of SampEn in turn section was significantly different from that of quiet segment(P<0.05), there was not significant difference between straight section and quiet segment(P>0.05), and the values of SampEn in turn section was smaller than that of straight section, which indicated that degree of fatigue of the former was higher than that of the latter.Compared with the subjective evaluation method of driver fatigue, determining diver fatigue method according to the change of the value of SampEn can more accurately reflect the beginning and deepening period of combine harvester driver fatigue, and objectively reflect the driver's physical and mental fatigue status.

Keywords:agricultural machinery; combine harvester; monitoring; driver fatigue; heart rate variability; SampEn

通信作者:※王金武,男,教授,博士生导师,从事田间机械与机械可靠性方面的研究。哈尔滨东北农业大学工程学院,150030。Email:jinwuw@163.com

作者简介:祝荣欣,女,讲师,博士生,主要从事车辆人机工程方面的研究。哈尔滨东北农业大学工程学院,150030。Email:zhu-rongxin@126.com

基金项目:国家科技支撑计划资助项目(2014BAD06B04);国家自然科学基金资助项目(51205056)

收稿日期:2015-08-16

修订日期:2015-11-12

中图分类号:TB18

文献标志码:A

文章编号:1002-6819(2016)-01-0077-07

doi:10.11975/j.issn.1002-6819.2016.01.010

猜你喜欢
联合收割机心率变异性农业机械
农业机械设计的未来趋势探索
宜宾市农业机械研究所
联合收割机零件的养护及故障的预防
如何保养联合收割机主要工作装置
联合收割机底盘主要部件的保养方法
不同浓度七氟醚对老年冠心病患者麻醉诱导期心率变异性的影响
急性心肌梗死患者经皮冠状动脉介入和静脉溶栓治疗后心率变异性的影响研究
农业机械自动化在现代农业中的应用与发展趋势
电子信息技术在农业机械中的应用
心率变异性是自我调节的生物指标