百日草离体叶肉细胞分化为管状分子概述

2016-04-05 00:33郭学民
河北科技师范学院学报 2016年4期
关键词:管状离体分化

李 娜,白 兰,郭学民

(河北科技师范学院生命科技学院,河北 秦皇岛,066600)

百日草离体叶肉细胞分化为管状分子概述

李 娜,白 兰,郭学民*

(河北科技师范学院生命科技学院,河北 秦皇岛,066600)

概述了植物细胞分化的模式系统——管状分子分化实验系统的建立以及基于该系统的管状分子分化的生理学、细胞学、生物化学和分子生物学等方面的研究进展,并对今后的研究方向进行了展望。

百日草;次生细胞壁;细胞分化;管状分子

管状分子(Traeheary Elements,TEs)是维管植物木质部内导管和管胞的总称,皆为长柱状细胞,次生壁木质化,成熟后均缺乏原生质体,其功能是输导水分、矿质元素和机械支持作用。导管和管胞差别是,管胞无穿孔,管胞间壁仅有具缘纹孔,借以实现物质转运;而导管分子间的某些区域具有穿孔,多个导管分子通过末端的穿孔连接形成一个长的管道,即导管,与管胞相比,其输导能力大大增强。管状分子来源于形成层,由形成层细胞经过细胞扩增、次生壁沉积、胞内物质自溶、形成端壁穿孔等步骤而形成[1, 2]。

管状分子分化已被作为植物细胞分化的模式系统,在形态结构、生化和分子组成、发育及生理功能上都具有明显的特点,是植物解剖学、发育生物学和细胞生物学的研究热点之一。多年来,各国学者建立了整体实验系统和离体实验系统,对管状分子的形态解剖学、生理学以及分子机制进行了一定的研究。其中,百日草(ZinniaelegansJacq.)叶肉细胞离体培养系统是目前分化效果最好的实验系统,人们利用该系统开创性地研究了离体条件下管状分子分化的基本过程,并对管状分子分化的细胞学、生理学、生物化学和分子生物学进行了卓有成效的研究。笔者拟对30多年来人们利用百日草叶肉细胞离体培养系统的研究成果进行概述,为进一步阐明管状分子分化机制提供基础。

1 离体实验系统的建立

因为管状分子形态随着分化进程而发生显著变化,其中包括环纹、螺纹和网纹次生细胞壁(SCW)的形成以及自溶作用。所以,管状分子分化被认为是植物细胞分化的模式系统。然而,大多数早期关于分化的研究,采用的是多细胞系统,这样的系统包含几种作为起始材料的细胞类型,为追踪单个细胞分化过程带来了困难。Kohlenbach和Schmidt[3]发现,以机械法分离的单个百日草叶肉细胞可直接分化为管状分子,这促使Fukuda和Komamine[4]在此基础上,建立了一个有效的、高频分化的实验系统。该系统已被全世界许多实验室广泛应用,有时根据特定情况仅仅对一些细节进行了修改[5~10]。

用液体介质浸渍百日草叶片,研磨后,以小网眼筛过滤,液体介质反复漂洗悬浮液,分离得到单个叶肉细胞。要注意:(1)材料要适当。取幼苗第一对叶,而非成年植物最嫩的叶片。(2)条件要适当。旋转培养转速为10 r/min,0.3~0.4 mol/L山梨醇调节渗透压,生长调节剂为0.1 mg/L a-萘乙酸(NAA)和1 mg/L 6-苄基腺嘌呤(6-BA),起始细胞浓度为(0.4~3.8)×108细胞/L。这样,几乎30%分离叶肉细胞,在适当的离体培养条件下,可半同步地分化为管状分子。

2 细胞学、生理学和生物化学方面的研究

百日草实验系统的建立促进了管状分子分化诸多方面的研究(图1)。初步的细胞学和生理学研究表明,细胞分裂不是管状分子分化的前提条件,而一些DNA合成在分化中发挥重要作用[11~21];以肌动蛋白依赖的微管重组,限定了次生细胞壁的特有格局[6,22~27];分化过程是动态的,细胞变化表现在次生细胞壁沉积前细胞器数量的增加,次生细胞壁沉积开始不久次生细胞壁木质化启动[28~31],原生质体逐渐自溶,初生壁非木质化部分的局部水解,分化过程终止[28,32~34]。另外,百日草系统已清晰地证明,管状分子分化受植物激素诸如生长素、细胞分裂素[4]、油菜素内酯[35,36]、赤霉素[37]、一氧化氮[38]、乙烯[39]、信号肽(例如CLE肽[40]、木质素[41]、植物磺肽素[42])的调控;另外,大量生化和免疫学研究,揭示了细胞壁成分诸如纤维素、木聚糖、木质素和其他次生壁特有分子的变化[29,30,43~50],以及自溶过程中的各种事件,诸如蛋白质和核酸的降解[51,52]等。

图1 百日草叶肉细胞管状分子分化模型

在生长素、细胞分裂素、植物磺肽素、木质素、油菜素内酯、乙烯、赤霉素作用下,离体叶肉细胞可被诱导分化为管状分子,但是CLE肽却抑制分化。

3 相关基因的鉴定与描述

人们也用分子生物学方法,进一步分析了百日草实验系统中管状分子分化的分子机制(图1)。运用同源克隆法(例如,核酸酶ZEN1[53],肉桂醇脱氢酶和过氧物酶[54],b-微管蛋白[55],油菜素内酯合成酶[56]和Rho/Rac small GTPases[57]),差示筛选法(例如,分化标记,管状分子分化相关的(TED)2-4(Tracheary Element Differentiation-related(TED)2-4)[58~60],果胶裂解酶[61]),消减杂交法(例如,核糖核酸酶[62]及分化标记、蛋白酶和木质素合成酶[10,63~65])、全面的转录组分析微阵列[66~68]和cDNA-AFLP[69],分别鉴定了许多与编码管状分子特定事件相关蛋白质的cDNA,和限定管状分子分化特定阶段的标记蛋白。因为百日草转化方法尚不稳定,所以其分离基因的功能分析受到很大制约(例如,果胶裂解酶ZePel[61],TED4[70],过氧物酶ZPO-C[54])。然而,最近,通过基因枪法和电穿孔转染法,瞬间将基因或双链RNAs导入百日草细胞,成功地描述了其他基因的功能[57,71~73],这可能为管状分子分化相关基因功能的分析提供了有益的线索。

4 其他植物的研究

在利用百日草实验系统,研究管状分子分化调控的基础上,建立了拟南芥人工培养细胞的管状分子分化系统,该系统在油菜素内酯调控下,有30%~50%继代细胞分化为管状分子[74,75]。后续的基因芯片分析表明,多数拟南芥基因在管状分子分化期间特异表达[74],这些基因包括编码植物特定NAC-domain转录因子VND1-7的基因家族,借以最终揭示长久以来寻找的管状分子分化的转录开关[74]。在某些植物和人工培养细胞中,VND基因被作为管状分子异常分化的有效诱导物[76~79]。

5 待解决的问题和未来研究展望

管状分子分化百日草叶肉细胞离体实验系统的研究在草本植物中广泛展开。该系统为诱导和促进管状分子分化的研究建立了有效的平台,并获得了一些关键基因和调节因子,初步揭示了管状分子分化的机制,为在单细胞水平上认识细胞分化和转分化途径、分化过程影响因素提供了可能,但复杂、精确的分子机制的构建仍需进一步研究。(1)管状分子分化具有复杂的时空特异性,调控网络综合而庞大,虽然生长素和细胞分裂素是管状分子分化的基本调节激素,已有学者对2者进行了大量研究并取得一定的成果,但是其他激素诸如赤霉素、乙烯、脱落酸、油菜素内酯等作用效果研究资料极少,所以,植物激素作用机制的研究尚未明确。(2)管状分子分化是植物细胞凋亡的典型例子,成熟的管状分子丧失了细胞核和细胞内容物,成为死的、中空的管状细胞。目前对管状分子细胞凋亡的信号转导途径知之甚少,需要进一步探索。(3)以草本植物百日草,甚至拟南芥为材料得到的管状分子分化的初步机制,是否适合木本植物,尚需验证。(4)虽然百日草系统较为成熟,管状分子分化率和同步性较高,但随着研究的深入,仍需进一步改进和优化游离单细胞的离体培养方法,摸索分化的最佳条件,提高分化率和同步性。(5)未来需要综合利用分子生物学、细胞生物学、生物信息学和系统生物学的研究方法,从多角度、多层次、多学科开展研究工作,结合模式植物拟南芥实验系统和实验植物分子遗传学,在不久的将来有可能全面阐明管状分子分化的机制。

[1] Turner S,Gallois P,Brown D.Tracheary element differentiation[J].Annu Rev Plant Biol,2007,58:407-433.

[2] Yin Z,Fan R.Uhrastructural analysis of the differentiation process of secondary xylem vessel element inPopulusdeltoids[J].Frontiers of Forestry in China,2009,4(4):484-488.

[3] Kohlenbach H W,Schmidt B.Cytodifferenzierung in form einer direkten umwandlung isolierter mesophyllzellen zu tracheiden(Cytodifferentiation in the mode of a direct transformation of isolated mesophyll cells to tracheids)[J].Z Pflanzenphysiol,1975,75:369-374.

[4] Fukuda H,Komamine A.Establishment of an experimental system for the tracheary element differentiation from single cells isolated from the mesophyll ofZinniaelegans[J].Plant Physiol,1980,65(1):57-60.

[5] Church D L,Galston A W.4-Coumarate:coenzyme A ligase and isoperoxidase expression inZinniamesophyll cells induced to differentiate into tracheary elements[J].Plant Physiol,1988,88:679-684.

[6] Falconer M M,Seagull R W.Immunofluorescent and Calcofluor white staining of developing tracheary elements inZinniaelegansL. suspension cultures[J].Protoplasma,1985,125:190-198.

[7] Groover A,Jones A M.Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis[J].Plant Physiol,1999,119:375-384.

[8] Roberts A W,Haigler C H.Tracheary-element differentiation in suspension-cultured cells ofZinniarequires uptake of extracellular Ca2+.Experiments with calcium-channel blockers and calmodulin inhibitors[J].Planta,1990,180:502-509.

[9] Stacey N J,Roberts J C,Carpita N C,et al.Dynamic changes in cell surface molecules are very early events in the differentiation of mesophyll cells fromZinniaelegansinto tracheary elements[J].Plant J,1995,8:891-906.

[10] Ye Z H,Varner J E.Gene expresion patterns associated with in vitro tracheary element formation in isolated single mesophyll cells ofZinniaelegans[J].Plant Physiol,1993,103:805-813.

[11] Fukuda H,Komamine A.Direct evidence for cytodifferentiation to tracheary elements without intervening mitosis in a culture of single cells isolated from the mesophyll ofZinniaelegans[J].Plant Physiol,1980,65:61-64.

[12] Fukuda H,Komamine A.Relationship between tracheary element differentiation and DNA synthesis in single cells isolated from the mesophyll ofZinniaelegans. Analysis by inhibitors of DNA synthesis[J].Plant Cell Physiol,1981,22:41-49.

[13] Fukuda H,Komamine A.Relationship between tracheary element differentiation and the cell cycle in single cells isolated from the mesophyll ofZinniaelegans[J].Physiol Plant,1981,52(4):423-430.

[14] Yuichi Shoji,Munetaka Sugiyama,Atsushi Komamine.Suppression by 5-Bromo-2′-deoxyuridine of Transdifferentiation into Tracheary Elements of Isolated Mesophyll Cells ofZinniaelegans[J].Plant Cell Physiol,1996,37(3):401-403.

[15] Yuichi Shoji,Munetaka Sugiyama,Atsushi Komamine.Involvement of Poly(ADP-Ribose) Synthesis in Transdifferentiation of Isolated Mesophyll Cells ofZinniaelegansinto Tracheary Elements[J].Plant Cell Physiol,1997:38:36-43.

[16] Munetaka Sugiyama,Hiroo Fukuda,Atsushi Komamine.Effects of Nutrient Limitation and γ-Irradiation on Tracheary Element Differentiation and Cell Division in Single Mesophyll Cells ofZinniaelegans[J].Plant Cell Physiol,1986,27(4):601-606.

[17] Munetaka Sugiyama,Hiroo Fukuda,Atsushi Komamine.Characteristics of the Inhibitory Effects of 5-Fluorodeoxyuridine on Cytodifferentiation into Tracheary Elements of Isolated Mesophyll Cells ofZinniaelegans[J].Plant Cell Physiol,1990,31(1): 61-67.

[18] Munetaka Sugiyama,Hiroo Fukuda,Atsushi Komamine.Characterization of the inhibitory effect of aphidicolin on transdifferentiation into tracheary elements of isolated mesophyll cells ofZinniaelegans[J].Plant Cell Physiol,1994,35(3):519-522.

[19] Munetaka Sugiyama,Edward C Yeung,Yuichi Shoji,et al.Possible Involvement of DNA-Repair Events in the Transdifferentiation of Mesophyll Cells ofZinniaelegansinto Tracheary Elements[J].J Plant Res,1995,108:351-361.

[20] Munetaka Sugiyama,Atsushi Komamine.Effect of Inhibitors of ADP-ribosyltransferase on the Differentiation of Tracheary Elements from Isolated Mmesophyll Cells ofZinniaelegans[J].Plant Cell Physiol,1987,28(3):541-544.

[21] Munetaka Sugiyama,Atsushi Komamine.Incorporation of 5-Fluorodeoxyuridine into Nucleic Acids in Transdifferentiating Mesophyll cells ofZinniaelegans[J].J Plant Physiol,1994,144:136-140.

[22] Falconer M M,Seagull R W.Xylogenesis in tissue culture II: microtubules, cell shape and secondary wall patterns[J].Protoplasma,1986,133:140-148.

[23] Falconer M M,Seagull R W.Amiprophosmethyl(APM): a rapid, reversible, anti-microtubule agent for plant cell cultures[J].Protoplasma,1987,136:118-124.

[24] Hiroo Fukuda.A Change in Tubulin Synthesis in the Process of Tracheary Element Differentiation and Cell Division of IsolatedZinniaMesophyll Cells[J].Plant Cell Physiol,1987,28(3):517-528.

[25] Fukuda H,Kobayashi H.Dynamic organization of the cytoskeleton during tracheary-element differentiation[J].Dev Growth Diff,1989,31:9-16.

[26] Kobayashi H,Fukuda H,Shibaoka H.Reorganization of Actin Filaments Associated with the Differentiation of Tracheary Elements inZinniamesophyll Cells[J].Protoplasma,1987,138:69-71.

[27] Kobayashi H,Fukuda H,Shibaoka H.Interrelationship Between the Spatial Disposition of Actin Filaments and Microtubules During the Differentiation of Tracheary Elements in CulturedZinniaCells[J].Protoplasma,1988,143:29-37.

[28] Fukuda H,Komamine A.Cytodifferentiation.[C]//Vasil IK.Cell Culture and Somatic Cell Genetics of Plants.Orlando:Academic Press,1985,2:149-212.

[29] Edgar Ingold,Munetaka Sugiyama,Atsushi Komamine.Secondary Cell wall Formation: Changes in Cell Wall Constituents During the Differentiation of Isolated Mesophyll Cells ofZinniaelegansto Tracheary Elements[J].Plant Cell Physiol,1988,29:295-303.

[30] Edgar Ingold,Munetaka Sugiyama,Atsushi Komamine.L-α-Aminooxy-β-phenylpropionic acid inhibits lignification but not the differentiation to tracheary elements of isolated mesophyll cells ofZinniaelegans[J].Physiol Plant,1990,78:67-74.

[31] Lin Q,Northcote D H.Expression of phenylalanine ammonialyase gene during tracheary-element differentiation from cultured mesophyll cells ofZinniaelegansL[J].Planta,1990,182:591-598.

[32] Jeremy Burgess,Paul Linstead.In-virro tracheary element formation: structural studies and the effect of tri-iodobenzoic acid[J].Planta,1984,160:481-489.

[33] Jin Nakashima,Keiji Takabe,Minoru Fujita,et al.Autolysis during In Vitro Tracheary Element Differentiation:Formation and Location of the Perforation[J].Plant Cell Physiol,2000, 41(11):1 267-1 271.

[34] Ohdaira Y,Kakegawa K,Amino S I,et al.Activity of cell-wall degradation associated with differentiation of isolated mesophyll cells ofZinniaelegansinto tracheary elements[J].Planta,2002,215(2):177-184.

[35] Iwasaki T,Shibaoka H.Brassinosteroids act as regulators of tracheary-element differentiation in isolatedZinniamesophyll cells[J].Plant Cell Physiol,1991,32(7):1 007-1 014.

[36] Yamamoto R,Fujioka S,Demura T,et al.Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements[J].Plant Physiol,2001,125(2):556-563.

[37] Tokunaga N,Uchimura N,Sato Y.Involvement of gibberellin in tracheary element differentiation and lignification inZinniaelegansxylogenic culture[J].Protoplasma,2006,228(4):179-187.

[38] Gabaldón C M,López-Serrano M,Pedreo M A,et al.Cloning and molecular characterization of the basic peroxidase isoenzyme fromZinniaelegans, an enzyme involved inLigninbiosynthesis[J].Plant Physiology,2005,139(3):1 138-1 154.

[39] Pesquet E,Tuominen H.Ethylene stimulates tracheary element differentiation inZinniaeleganscell cultures[J].New Phytol,2011,190(1):138-149.

[40] Ito Y,Nakanomyo I,Motose H,et al.Dodeca-CLE peptides as suppressors of plant stem cell differentiation[J].Science,2006,313:842-845.

[41] Motose H,Sugiyama M,Fukuda H.A proteoglycan mediates inductive interaction during plant vascular development[J].Nature,2004,429:873-878.

[42] Matsubayashi Y,Takagi L,Omura N,et al.The endogenous sulfated pentapeptide phytosulfokine-alpha stimulates tracheary element differentiation of isolated mesophyll cells ofZinnia[J].Plant Physiol,1999,120:1 043-1 048.

[43] Fukuda H,Komamine A.Lignin Synthesis and Its Related Enzymes as Markers of Trachearyelement Differentiation in Single Cells Isolated from the Mesophyll ofZinniaelegans[J].Planta,1982,155(4):423-430.

[44] Haigler C H,Ivanova-Datcheva M,Hogan P S,et al.Carbon partitioning to cellulose synthesis[J].Plant Cell Walls,2001,47:29-51.

[45] Masuda H,Fukuda H,Komamine A.Changes in peroxidase isoenzyme patterns during tracheary element differentiation in a culture of single cells isolated from the mesophyll ofZinniaelegans[J].Z Pflanzenphysiol,1983,112:417-426.

[46] Sato Y, Sugiyama M, Gorecki R J,et al.Interrelationship between lignin deposition the activities of peroxidase isoenzymes in differentiating tracheary elements ofZinnia: analysis using L-α-aminooxy-β-phenylpropionic acid and 2-aminoindan-2-phosphonic acid[J].Planta,1993,189:584-589.

[47] Sato Y,Sugiyama M,Komamine A,et al.Separation and characterization of the isoenzymes of wall-bound peroxidase from culturedZinniacells during tracheary element differentiation[J].Planta,1995,196:141-147.

[48] Sato Y, Watanabe T, Komamine A, et al.Changes in the activity and mRNA of cinnamyl alcohol dehydrogenase during tracheary element differentiation inZinnia[J].Plant Physiol,1997,113:425-430.

[49] Shinohara N,Demura T,Fukuda H.Isolation of a vascular cell wall-specific monoclonal antibody recognizing a cell polarity by using a phage display subtraction method[J].Proc Natl Acad Sci USA,2000,97:2 585-2 590.

[50] Suzuki K,Ingold E,Sugiyama M,et al.Xylan synthase activity in isolated mesophyll cells ofZinniaelegansduring differentiation to tracheary elements[J].Plant Cell Physiol,1991,32:303-306.

[51] Minami A, Fukuda H.Transient and specific expression of a cysteine endopeptidase during autolysis in differentiating tracheary elements fromZinniamesophyll cells into tracheary elements[J].Plant Cell Physiol,1995,36(8):1 599-1 606.[52] Thelen M P,Northcote D H.Identification and purification of a nuclease fromZinniaelegansL: a potential molecular marker for xylogenesis[J].Planta,1989,179:181-195.

[53] Aoyagi S,Sugiyama M,Fukuda H.BEN1 and ZEN1 cDNAs encoding S1-type DNases that are associated with programmed cell death in plants[J].FEBS Lett,1998,429:134-138.

[54] Sato Y,Demura T,Yamawaki K,et al.Isolation and characterization of a novel peroxidase geneZPO-Cof which expression and function are closely associated with lignification during tracheary element differentiation[J].Plant Cell Physiol,2006,47(4):493-503.

[55] Yoshimura T,Demura T,Igarashi M,et al.Differential expression of three genes for different tubulin isoforms during the initial culture ofZinniamesophyll cells that divide and differentiate into tracheary elements[J].Plant Cell Physiol,1996,37:1 167-1 176.

[56] Yamamoto R,Fujioka S,Iwamoto K,et al.Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation[J].Plant Cell Physiol,2007,48(1):74-83.

[57] Nakanomyo I,Kost B,Chua N H,et al.Preferential and asymmetrical accumulation of a Rac small GTPase mRNA in differentiating xylem cells ofZinniaelegans[J].Plant Cell Physiol,2002,43(12):1 484-1 492.

[58] Demura T,Fukuda H.Molecular cloning and characterization of cDNAs associated with tracheary element differentiation in culturedZinniacells[J].Plant Physiol,1993,103(2):815-821.

[59] Demura T, Fukuda H.Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development[J].The Plant Cell,1994,6(7):967-981.

[60] Igarashi M,Demura T,Fukuda H.Expression of the Zinnia TED3 promoter in developing tracheary elements of transgenicArabidopsis[J].Plant Mol Biol,1998,36:917-927.

[61] Domingo C,Roberts K,Stacey N J,et al.A pectate lyase fromZinniaelegansis auxin inducible[J].Plant J,1998,13:17-28.

[62] Ye Z H,Droste D L.Isolation and characterization of cDNAs encoding xylogenesis-associated and wounding-induced ribonucleases inZinniaelegans[J].Plant Mol Biol,1996,30:697-709.

[63] Ye Z H,Varner J E.Expression of an auxin- and cytokininregulated gene in cambial region inZinnia[J].Proc Natl Acad Sci USA,1994,91:6 539-6 543.

[64] Ye Z H,Varner J E.Induction of cysteine and serine proteases during xylogenesis inZinniaelegans[J].Plant Mol Biol,1996,30:1 233-1 246.

[65] Ye Z H,Kneusel R E,Matern U,et al.An alternative methylation pathway in lignin biosynthesis inZinnia[J].The Plant Cell,1994,6:1 427-1 439.

[66] Demura T,Tashiro G,Horiguchi G,et al.Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells[J].Proc Natl Acad Sci USA,2002,99:15 794-15 799.

[67] Pesquet E,Ranocha P,Legay S, et al.Novel markers of xylogenesis inZinniaare differentially regulated by auxin and cytokinin[J].Plant Physiol,2005,139:1 821-1 839.

[68] Yoshida S,Iwamoto K,Demura T,et al.Comprehensive analysis of the regulatory roles of auxin in early transdifferentiation into xylem cells[J].Plant Mol Biol,2009,70:457-469.

[69] Milioni D,Sado P,Stacey N J,et al.Early gene expression associated with the commitment and differentiation of a plant tracheary element is revealed by cDNA-amplified fragment length polymorphism analysis[J].Plant Cell,2002,14:2 813-2 824.

[70] Endo S,Demura T,Fukuda H.Inhibition of proteasome activity by the TED4 protein in extracellular space: a novel mechanism for protection of living cells from injury caused by dying cells[J].Plant Cell Physiol,2001,42:9-19.

[71] Endo S,Pesquet E,Tashiro G,et al.Transient transformation and RNA silencing inZinniatracheary element differentiating cell cultures[J].Plant J,2008,53:864-875.

[72] Endo S,Pesquet E,Yamaguchi M,et al.Identifying new components participating in the secondary cell wall formation of vessel elements inZinniaandArabidopsis[J].Plant Cell,2009,21(4):1 155-1 165.

[73] Ito J,Fukuda H.ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements[J].Plant Cell,2002,14:3 201-3 211.

[74] Kubo M,Udagawa M,Nishikubo N,et al.Transcription switches for protoxylem and metaxylem vessel formation[J].Genes Dev,2005,19(16):1 855-1 860.

[75] Oda Y,Mimura T,Hasezawa S.Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions[J].Plant Physiol,2005,137:1 027- 1 036.

[76] Oda Y,Iida Y,Kondo Y,et al.Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein[J].Curr Biol,2010,20(13):1 197-1 202.

[77] Ohtani M,Nishikubo N,Xu B,et al.A NAC domain protein family contributing to regulation of wood formation in poplar[J].Plant J,2011,67(3):499-512.

[78] Valdivia E R,Herrera M T,Gianzo C,et al.Regulation of secondary wall synthesis and cell death by NAC transcription factors in the monocotBrachypodiumdistachyon[J].J Exp Bot,2013,64(5):1 333-1 343.

[79] Yamaguchi M,Goué N,Igarashi H,et al.VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR- RELATED NAC-DOMAIN7 effectively induce transdifferentiation into xylem vessel elements under control of an induction system[J].Plant Physiol,2010,153:906-914.

(责任编辑:朱宝昌)

Progress on Differentiation of Isolated Mesophyll Cells into Tracheary Elements in Common Zinnia (ZinniaelegansJacq.)

LI Na, BAI Lan, GUO Xuemin

(College of Life Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao Hebei, 066600, China)

Differentiation of tracheary elements (TEs) has been regarded as a model system for cytodifferentiation in plants. Fukuda and Komamine established an efficient experimental system for TE differentiation from isolated single mesophyll cells ofZinniaelegans, which provided an excellent platform for the study of TEs differentiation at single cell level. The establishment of the system and the progress on physiology, cytology, biochemistry and molecular biology of the system-based TEs differentiation were summarized in this paper. At last, the future research direction of TEs differentiation was prospected.

Zinniaelegans; secondary cell wall; cytodifferentiation; tracheary element

10.3969/J.ISSN.1672-7983.2016.04.010

河北科技师范学院博士后启动基金项目(项目编号:2013YB021)。

2016-11-23;修改稿收到日期: 2016-12-21

S681.9

A

1672-7983(2016)04-0061-07

李娜(1991-),女,硕士研究生。主要研究方向:植物发育细胞生物学。

*通讯作者,男,博士,教授。主要研究方向:植物结构生理学。E-mail: xueminguo@126.com。

猜你喜欢
管状离体分化
肾脏黏液样管状和梭形细胞癌1例报道
两次中美货币政策分化的比较及启示
浅谈管状骨架喷涂方法
无限管状区域上次调和函数的边界性质
分化型甲状腺癌切除术后多发骨转移一例
鲁政委:房地产同城市场初现分化
长白落叶松离体再生体系的建立
切花月季‘雪山’的离体快繁体系的建立
灵魂离体
离体牙经不同方法消毒后微生物培养分析