贝毅桦,肖俊杰
(上海大学生命科学学院再生与衰老实验室,上海200444)
运动诱导心脏再生:治疗心血管疾病的新途径
贝毅桦,肖俊杰
(上海大学生命科学学院再生与衰老实验室,上海200444)
虽然成年哺乳动物的心脏具备有限的再生能力,但在心肌损伤后无法弥补丢失的心肌细胞.运动诱导心脏再生,不仅能促进心肌细胞的肥大和自我更新、抑制凋亡,而且能影响血管内皮细胞和成纤维细胞的功能.IGF-1/PI3K/Akt信号通路、C/EBPβ/CITED4转录因子、一氧化氮是运动促进心脏再生的重要分子机制.微小RNA作为生物学标记物,在运动诱导的心脏再生中的作用日益受到关注.更重要的是,运动诱导的心脏再生对心肌梗死、心肌缺血再灌注损伤、代谢型心肌病、衰老相关的心肌损伤具有保护效应.基于运动诱导的心脏再生将成为治疗心血管疾病的新途径.
心脏再生;运动;心肌细胞;干细胞
心血管疾病在全球范围都是导致死亡的重要原因.尽管人们在处理和应对急性心血管事件如心肌梗死等疾病中已经取得了巨大的进展,许多患者仍不可避免地发展为心力衰竭,甚至死亡[1].据美国疾病预防和控制中心统计,全美约有600万人患有心力衰竭,其中约有50%的患者会在5年内死亡,心力衰竭是目前65岁以上人群最常见的出院诊断[2].《中国心血管病报告2014》的数据显示,我国约有2.9亿心血管病患者,其中心力衰竭患者450万,慢性心力衰竭住院患者的30 d死亡率高达5.4%,心力衰竭已经成为危害人类健康、加重社会和家庭经济负担的重要病因.
传统观点认为,成年心脏不具备心肌形成的能力,心肌细胞长久以来被认为是终末分化的细胞[3].然而,越来越多的动物和人类研究发现,成年哺乳动物心脏在正常老化和疾病过程中,确实具备一定内在的再生能力[4-5].这些新形成的心肌细胞可以来自原有的心肌细胞[6-7],也可以来自心脏干细胞或前体细胞[5,8].尽管这两种来源的心肌细胞对于心脏再生的贡献程度至今仍未界定,心脏也无法通过自身有限的再生能力有效弥补心肌损伤后心肌细胞的丢失,然而人们对于“成年心脏具有再生能力”这一认识无疑将为心肌损伤和心力衰竭提供新的治疗方向.
运动可以有效防治多种心血管疾病的发生和发展[9].适度的运动不仅有助于降低罹患心血管疾病的风险,而且可以通过一系列细胞和分子的调控机制促进心脏再生[10].这种基于运动诱导的心脏再生主要表现为心肌细胞体积的增加,同时伴随一定程度的心肌细胞数目的增多[11].本综述将分别阐述运动诱导心脏再生的细胞、分子机制及运动相关的微小RNA调控,并且提出基于运动诱导心脏再生对治疗心血管疾病的启示.
1.1运动诱导心肌细胞肥大
心肌细胞是心脏的主要工作肌细胞,在机械应激、细胞因子、生长因子、儿茶酚胺、血管活性肽、激素等作用下,心肌细胞会发生体积增大、形态改变、蛋白合成水平增加以及心肌病理性重构标志基因如心钠肽(atrial natriuretic peptide,ANP)、B型脑钠肽(brain natriuretic peptide,BNP)、sk-α-肌动蛋白(sk-α-actin)、β-肌球蛋白重链(β-myosin heavy chain,β-MHC)表达水平上调,同时伴随心肌细胞的凋亡和坏死[12].持久的心肌肥厚会造成心肌收缩和/或舒张功能的下降、心室扩张、室壁增厚,最终可以发展为心力衰竭[13].
区别于病理性心肌肥厚,运动诱导的生理性心肌肥大不会导致心肌细胞的丢失(凋亡和坏死)、心肌纤维化以及心功能下降[10,14].更重要的是,基于运动的心脏再生已经被越来越多的动物及临床试验证实,对于病理性的心肌损伤具有重要的保护效应[15].心肌细胞体积的增大以往一直被认为是心脏再生的主要机制.就心脏而言,持久的耐力训练(如跑步、游泳)可使心脏发生向心性肥大,而持久的力量训练(如举重、摔跤)可使心脏发生远心性肥大[16].进一步从心肌细胞的微观结构来看,运动可以使心肌细胞的面积增加17%~32%[17].
1.2运动诱导心肌细胞自我更新
2009年,Bergmann等[18]指出,在人的一生中接近50%的心肌细胞会被替换为新的心肌细胞[18].心肌细胞具有自我更新的能力,这成为除心肌细胞肥大之外,运动诱导心脏再生的又一重要的细胞机制.已有研究证实,游泳训练不仅可以促使小鼠的心肌细胞发生体积增大,而且可以促进心肌细胞的数量增多[19].转录因子CCAAT/enhancer binding protein β(C/EBPβ)下调继发性激活carboxy-terminal domain 4(CITED4)是运动诱导心脏再生的重要分子机制;同时,C/EBPβ敲除的基因工程小鼠可以抵抗高血压所致的心肌肥厚和心力衰竭.已有研究指出,运动诱导的微小RNA-222表达水平升高同样可以促使心肌细胞发生肥大和增殖,并且对于心肌缺血再灌注损伤后的心室重构和心力衰竭具有保护效应[20].
运动诱导心肌细胞的自我更新,不仅取决于已有心肌细胞的增殖,而且还依赖于心脏干细胞/前体细胞的分化[21].成年心脏中存在干细胞/祖细胞群,包括c-kit,Sca-1或Islet-1阳性细胞及侧群(side population)细胞,它们具有分化为心肌细胞的能力[22-23].Ellison等[21]的研究证实,运动诱导的心脏再生可促使心脏干细胞向心肌细胞分化.同样,Kolwicz等[24]报道了运动对高血压大鼠的心功能具有保护效应,这不仅与运动所致的心肌细胞的增殖有关,而且伴随着c-kit阳性干细胞数量的增多.在另一项研究中,Xiao等[25]发现运动诱导的c-kit阳性干细胞的激活和分化分别受到胰岛素样生长因子-1(insulinlike-growth factor-1,IGF-1)、神经调节素-1(neuregulin-1,NRG-1)、骨形态形成蛋白-10(bone morphogenetic protein-10,BMP-10)和转化型生长因子-β1(transforming growth factor-β1,TGF-β1)的调控[25].
值得注意的是,尽管运动被认为可以促进心肌细胞的增殖和心脏干细胞/祖细胞群的活化、移行、驻留和分化,然而这种促进作用对于运动保护心肌损伤的贡献程度仍需进一步探讨和评估.
1.3运动抑制心肌细胞凋亡
运动诱导的生理性心肌肥大不伴随有心肌细胞的凋亡和坏死,这是区别于病理性心肌肥大的重要特征之一[10,14].事实上,运动可以通过有效抑制心肌损伤后出现的心肌细胞凋亡,从而实现对心脏的保护作用.动物实验研究发现,3周游泳训练可以有效降低小鼠急性心肌梗死24 h后的梗死面积,减少心肌细胞的凋亡,改善心肌的能量代谢[26].另一项研究报道指出,15周跑步训练可以显著改善糖尿病db/db小鼠的心功能,抑制心肌细胞的凋亡和心肌纤维化[27].可见,运动抑制心肌细胞的凋亡是运动保护心肌损伤的又一重要机制.
2.1IGF-1/PI3K/Akt信号通路
IGF-1/PI3K/Akt信号通路是运动诱导生理性心肌肥大的经典分子机制[28].IGF-1转基因小鼠在出生后10周可出现生理性心肌肥大[29].心脏特异性敲除PI3K的p85亚单位可以阻止运动诱导的生理性心肌肥大的发生[30].Akt作为一种丝氨酸/苏氨酸激酶,是PI3K主要的下游效应分子[28].Akt1敲除小鼠没有发生运动后的生理性心肌肥大,同时在压力过负荷刺激下可出现严重的病理性心肌肥大[31].上述研究结果表明,IGF-1/PI3K/Akt信号通路的激活是运动诱导生理性心肌肥大所必需的,同时也是运动保护病理性心肌肥大的重要分子机制.
2.2C/EBPβ和CITED4核转录因子
C/EBPβ是一类具有抗增殖活性的转录因子[32].已有研究发现,C/EBPβ表达在运动诱导的心脏再生中显著下调,C/EBPβ表达下降可在体外促进心肌细胞的肥大和增殖[20].值得注意的是,C/EBPβ敲除小鼠表现出更强的运动能力,同时可以抵抗压力过负荷所致的病理性心肌肥大[19].一方面,C/EBPβ下调可以促使心肌肥大的相关基因Gata4,Tbx5,Nkx2.5,TnI及TnT被激活;另一方面,运动诱导的C/EBPβ下调可以通过与血清反应因子(serum response factor,SRF)的互作进一步激活Gata4,同时也可以使转录因子CITED4被激活.而在已有报道中,Gata4和CITED4与心肌细胞的增殖相关[7,19].有趣的是,C/EBPβ还是神经调节素-1(neuregulin-1,NRG-1)的重要效应分子,而NRG-1过表达可以诱导心肌细胞增殖,促进心肌再生,从而保护心肌梗死后的心功能[6].另有研究指出,敲除C/EBPβ可以在体外抑制苯肾上腺素诱导的心肌细胞的病理性肥大,提示运动相关的分子机制可以被用于保护病理性心肌肥大[33].
2.3一氧化氮信号通路
在心血管系统中,一氧化氮(nitricoxide,NO)主要在内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的作用下于血管内皮细胞和心肌细胞内合成.运动可以增加血管壁的剪切应力,升高循环血儿茶酚胺的浓度,从而诱导eNOS的表达和活性,提高NO的合成和生物利用度[34].运动诱导心脏再生的同时,也需要新生血管的形成[11].动物实验和人类研究发现,持久的运动训练不仅可以增加冠状动脉的血流量,而且还伴随着小动脉和毛细血管密度的增加[35-36].运动可以诱导血管内皮生长因子(vascular endothelial growth factor,VEGF)的表达,进一步促使Akt磷酸化和eNOS激活[37].这种与运动相关的eNOS激活被认为是运动过程中动员骨髓来源的内皮祖细胞(endothelial progenitor cells,EPCs)的重要机制,而eNOS敲除的运动小鼠由于无法募集到足够的EPCs,从而导致心脏新生血管的减少[38-39].此外,运动可以激活β3-肾上腺素受体和NO信号通路,增加心脏内亚硝酸盐(nitrite)和亚硝基硫醇类(nitrosothiols)的含量,从而有效减轻心脏的缺血再灌注损伤[40-41].
微小RNA(microRNAs,miRNAs)是一类单链长度为20~25个核苷酸序列的非编码RNA,可以通过结合靶基因信使RNA(messenger RNAs,mRNAs)的3'端非翻译区,在转录后水平实现对靶基因的负调控[42-43].一个微小RNA可以调控多个靶基因,而同一个基因又可以被多个微小RNA所调控,因此微小RNA成为基因表达网络中的重要调控者.微小RNA参与调控细胞肥大、凋亡、增殖、分化、移行等多种生物学行为,在心脏的生理及病理生理过程中发挥着重要的作用[9,44-45].
miR-1,miR-133a和miR-133b在心血管病理生理学中得到广泛研究.运动训练、Akt过表达、主动脉缩窄术均可使得miR-1,miR-133a和miR-133b在心脏中的表达下调,说明这些微小RNA同时在生理性和病理性的心肌肥大中起作用[46].相反,另一些微小RNA如miR-34a,miR-210,miR-222在病理性心肌重构和运动所致的生理性心肌肥大中具有不同的表达特征[47].据报道,miR-222在游泳和跑步训练中被诱导表达,miR-222是一个介导生理性心肌肥大的关键微小RNA,可以在体外促进心肌细胞的增殖和肥大,P27,HIPK1/2以及Hmbox1是miR-222的靶基因.更为重要的是,心肌特异性过表达miR-222可以有效改善缺血再灌注损伤小鼠6周以后的心功能,降低心肌凋亡及心肌纤维化,促进新的心肌细胞形成,这提示运动诱导的miR-222过表达对缺血再灌注损伤所致的病理性心室重构以及心功能下降具有显著的保护效应[20].此外,已有研究表明miR-214在运动后的心脏中表达下调,SERCA2a是其作用于心肌细胞的一个靶基因[48].
除心肌细胞以外,运动所致的微小RNA调控还会影响成纤维细胞的功能.在接受游泳训练的大鼠心脏中,miR-29c表达上调,同时伴随心室顺应性改善,心脏胶原纤维含量下降,ColⅠAⅠ和ColⅢAⅠ的表达下调[49].有趣的是,已有报道指出miR-29c下调可以在体外提高ColⅠAⅠ和ColⅢAⅠ基因在成纤维细胞的表达水平,而过表达miR-29c可以抑制成纤维细胞的胶原合成[50].这提示运动诱导的miR-29c表达上调可以通过抑制成纤维细胞的功能进而降低心肌纤维化,抑制心室重构的过程.
微小RNA可以在循环血液中稳定存在,循环血微小RNA作为生物学标记物,在诊断和治疗心血管疾病中的价值受到越来越多的关注[51-52].同样,运动可以使得循环血中的miR-34a,miR-146a,miR-30b,miR-21,miR-208a,miR-15的表达水平发生改变[53].此外,慢性心衰患者在接受急性心肺运动试验后,血清中的miR-222,miR-21,miR-378和miR-940也会被诱导表达[20,54].重要的是,运动相关的循环血微小RNA的来源及其功能机制值得展开更深入的探索.
运动不仅有利于控制体重,而且在降血压、降血糖、调节血脂等方面均表现出大量益处,适度持久的运动被心血管疾病专家视为极其重要的辅助治疗手段[55].急性心肌梗死后的心肌细胞发生大量坏死和凋亡、心肌代偿性肥厚、心肌纤维化,进而发生心室重构甚至心力衰竭.而此时,心脏自身有限的再生能力无法弥补心肌细胞的丢失[56].值得关注的是,科学家通过动物实验和人类研究发现,运动可以有效降低心肌梗死后的炎性因子的表达水平,抑制心肌细胞的凋亡,降低梗死面积和心肌纤维化程度[26,57-58].
对于急性心肌梗死患者,能否及时有效地接受再灌注治疗,包括对发病12 h内的患者进行药物溶栓治疗,或者在入院后90 min内行经皮冠状动脉介入治疗,是影响急性心肌梗死预后的关键[59].然而,目前的再灌注治疗不可避免地会引发心肌缺血再灌注损伤,这种因心肌缺血后重新恢复血流灌注而造成的严重损伤,包括心肌收缩功能降低、血管反应性改变、冠脉血流量下降等,会导致心肌细胞死亡、心室重构乃至心力衰竭[60].有趣的是,运动同样可以减轻心肌的缺血再灌注损伤.动物实验证实,持久规律的运动训练可以增强心脏的抗氧化能力,减轻心肌缺血再灌注损伤后的氧化应激过程[61].同时,运动可以诱导内皮祖细胞促进新生血管的形成,进而促进心肌缺血再灌注损伤后的组织修复[62].运动还可以促进Akt和糖原合成激酶-3β(glycogen synthase kinase-3β,GSK-3β)的磷酸化,抑制心肌细胞凋亡,改善心功能[63-64].
此外,运动可以激活PGC-1α和Akt信号通路,改善代谢型心肌病,如糖尿病心肌病的心肌损伤、心肌纤维化和心功能下降,抑制心肌细胞凋亡,增强线粒体的生物合成[27].运动还可以有效降低衰老所致的心肌细胞的丢失、心肌纤维化,对衰老相关的心血管疾病和心力衰竭具有不容忽视的保护作用[65-66].
运动诱导的心脏再生不仅可以促进心肌细胞的肥大和自我更新,抑制心肌细胞的凋亡,而且可以影响血管内皮细胞和成纤维细胞的功能.基于运动保护心肌损伤和心室重构所涉及的具体的细胞类型和分子机制值得深入探索.运动相关的微小RNA调控及循环血微小RNA改变对于心脏的功能学研究和机制研究亟待进一步明确.基于运动诱导心脏再生促进心肌修复,将成为未来治疗心血管疾病的新途径.
[1]WHITE H D,CHEW D P.Acute myocardial infarction[J].Lancet,2008,372(9638):570-584.
[2]ROGER V L,GO A S,LLOYD-JONES D M,et al.Heart disease and stroke statistics—2012 update:a report from the American Heart Association[J].Circulation,2012,125(1):e2-e220.
[3]NARULA J,HAIDER N,VIRMANI R,et al.Apoptosis in myocytes in end-stage heart failure[J]. New England Journal of Medicine,1996,335(16):1182-1189.
[4]ALI S R,HIPPENMEYER S,SAADAT L V,et al.Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(24):8850-8855.
[5]BELTRAMI A P,BARLUCCHI L,TORELLA D,et al.Adult cardiac stem cells are multipotent and support myocardial regeneration[J].Cell,2003,114(6):763-776.
[6]BERSELL K,ARAB S,HARING B,et al.Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury[J].Cell,2009,138(2):257-270.
[7]KIKUCHI K,HOLDWAY J E,WERDICH A A,et al.Primary contribution to zebrafish heart regeneration by gata4(+)cardiomyocytes[J].Nature,2010,464(7288):601-605.
[8]HSIEH P C,SEGERS V F,DAVIS M E,et al.Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury[J].Nature Medicine,2007,13(8):970-974.
[9]TAO L,BEI Y,ZHANG H,et al.Exercise for the heart:signaling pathways[J].Oncotarget,2015,6(25):20773-20784.
[10]ELLISON G M,WARING C D,VICINANZA C,et al.Physiological cardiac remodelling in response to endurance exercise training:cellular and molecular mechanisms[J].Heart,2012,98(1):5-10.
[11]LERCHENMULLER C,ROSENZWEIG A.Mechanisms of exercise-induced cardiac growth[J].Drug Discovery Today,2014,19(7):1003-1009.
[12]TAKEFUJI M,WIRTH A,LUKASOVA M,et al.G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure[J].Circulation,2012,126(16):1972-1982.
[13]KOMAJDA M,LAM C S.Heart failure with preserved ejection fraction:a clinical dilemma[J]. European Heart Journal,2014,35(16):1022-1032.
[14]BURCHFIELD J S,XIE M,HILL J A.Pathological ventricular remodeling:mechanisms:part 1 of 2[J].Circulation,2013,128(4):388-400.
[15]ANDERSON L,OLDRIDGE N,THOMPSON D R,et al.Exercise-based cardiac rehabilitation for coronary heart disease:cochrane systematic review and Meta-analysis[J].Journal of the American College of Cardiology,2016,67(1):1-12.
[16]WEINER R B,BAGGISH A L.Exercise-induced cardiac remodeling[J].Progress in Cardiovascular Diseases,2012,54(5):380-386.
[17]KEMI O J,LOENNECHEN J P,WISLOFF U,et al.Intensity-controlled treadmill running in mice:cardiac and skeletal muscle hypertrophy[J].Journal of Applied Physiology(1985),2002,93(4):1301-1309.
[18]BERGMANN O,BHARDWAJ R D,BERNARD S,et al.Evidence for cardiomyocyte renewal in humans[J].Science,2009,324(5923):98-102.
[19]BOSTROM P,MANN N,WU J,et al.C/EBPbeta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling[J].Cell,2010,143(7):1072-1083.
[20]LIU X,XIAO J,ZHU H,et al.miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling[J].Cell Metabolism,2015,21(4):584-595.
[21]FIGUEIREDO P A,APPELL C H J,DUARTE J A.Cardiac regeneration and cellular therapy:is there a benefit of exercise?[J].International Journal of Sports Medicine,2014,35(3):181-190.
[22]LERI A,KAJSTURA J,ANVERSA P.Cardiac stem cells and mechanisms of myocardial regeneration[J].Physiological Reviews,2005,85(4):1373-1416.
[23]HENNING R J.Stem cells in cardiac repair[J].Future Cardiology,2011,7(1):99-117.
[24]KOLWICZ S C,MACDONNELL S M,RENNA B F,et al.Left ventricular remodeling with exercise in hypertension[J].American Journal of Physiology:Heart and Circulatory Physiology,2009,297(4):H1361-H1368.
[25]XIAO J,XU T,LI J,et al.Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells[J].International Journal of Clinical and Experimental Pathology,2014,7(2):663-669.
[26]TAO L,BEI Y,LIN S,et al.Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis[J].Cellular Physiology and Biochemistry,2015,37(1):162-175.
[27]WANG H,BEI Y,LU Y,et al.Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1alpha and Akt activation[J].Cellular Physiology and Biochemistry,2015,35(6):2159-2168.
[28]KIM J,WENDE A R,SENA S,et al.Insulin-like growth factorⅠreceptor signaling is required for exercise-induced cardiac hypertrophy[J].Molecular Endocrinology,2008,22(11):2531-2543.
[29]DELAUGHTER M C,TAFFET G E,FIOROTTO M L,et al.Local insulin-like growth factorⅠexpression induces physiologic,then pathologic,cardiac hypertrophy in transgenic mice[J]. FASEB Journal,1999,13(14):1923-1929.
[30]LUO J,MCMULLEN J R,SOBKIW C L,et al.Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy[J].Molecular and Cellular Biology,2005,25(21):9491-9502.
[31]DEBOSCH B,TRESKOV I,LUPU T S,et al.Akt1 is required for physiological cardiac growth[J]. Circulation,2006,113(17):2097-2104.
[32]SEBASTIAN T,JOHNSON P F.Stop and go:anti-proliferative and mitogenic functions of the transcription factor C/EBPbeta[J].Cell Cycle,2006,5(9):953-957.
[33]ZOU J,LI H,CHEN X,et al.C/EBPbeta knockdown protects cardiomyocytes from hypertrophy via inhibition of p65-NFkappaB[J].Molecular and Cellular Endocrinology,2014,390(1/2):18-25.
[34]AKITA Y,OTANI H,MATSUHISA S,et al.Exercise-induced activation of cardiac sympathetic nerve triggers cardioprotection via redox-sensitive activation of eNOS and upregulation of iNOS[J].American Journal of Physiology:Heart and Circulatory Physiology,2007,292(5):H2051-H2059.
[35]WHITE F C,BLOOR C M,MCKIRNAN M D,et al.Exercise training in swine promotes growth of arteriolar bed and capillary angiogenesis in heart[J].Journal of Applied Physiology(1985),1998,85(3):1160-1168.
[36]KOZAKOVA M,PATERNI M,BARTOLOMUCCI F,et al.Epicardial coronary artery size in hypertensive and physiologic left ventricular hypertrophy[J].American Journal of Hypertension,2007,20(3):279-284.
[37]DIMMELER S,FLEMING I,FISSLTHALER B,et al.Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation[J].Nature,1999,399(6736):601-605.
[38]RIBEIRO F,RIBEIRO I P,ALVES A J,et al.Effects of exercise training on endothelial progenitor cells in cardiovascular disease:a systematic review[J].American Journal of Physical Medicine and Rehabilitation,2013,92(11):1020-1030.
[39]THIJSSEN D H,TORELLA D,HOPMAN M T,et al.The role of endothelial progenitor and cardiac stem cells in the cardiovascular adaptations to age and exercise[J].Frontiersin Bioscience-Landmark,2009,14:4685-4702.
[40]CALVERT J W,CONDIT M E,ARAGON J P,et al.Exercise protects against myocardial ischemiareperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling:role of nitrite and nitrosothiols[J].Circulation Research,2011,108(12):1448-1458.
[41]CALVERT J W,LEFER D J.Role of beta-adrenergic receptors and nitric oxide signaling in exercise-mediated cardioprotection[J].Physiology(Bethesda,Md.),2013,28(4):216-224.
[42]VAN ROOIJ E.The art of microRNA research[J].Circulation Research,2011,108(2):219-234.
[43]FARH K K,GRIMSON A,JAN C,et al.The widespread impact of mammalian microRNAs on mRNA repression and evolution[J].Science,2005,310(5755):1817-1821.
[44]VEGTER E L,VAN DER MEER P,DE WINDT L J,et al.MicroRNAs in heart failure:from biomarker to target for therapy[J].European Journal of Heart Failure,2016,18(5):457-468.
[45]PHILIPPEN L E,DIRKX E,DA COSTA-MARTINS P A,et al.Non-coding RNA in control of gene regulatory programs in cardiac development and disease[J].Journal of Molecular and Cellular Cardiology,2015,89(PtA):51-58.
[46]CARE A,CATALUCCI D,FELICETTI F,et al.MicroRNA-133 controls cardiac hypertrophy[J]. Nature Medicine,2007,13(5):613-618.
[47]LIN R C,WEEKS K L,GAO X M,et al.PI3K(p110 alpha)protects against myocardial infarctioninduced heart failure:identification of PI3K-regulated miRNA and mRNA[J].Arteriosclerosis,Thrombosis,and Vascular Biology,2010,30(4):724-732.
[48]MELO S F,BARAUNA V G,JUNIOR M A,et al.Resistance training regulates cardiac function through modulation of miRNA-214[J].International Journal of Molecular Sciences,2015,16(4):6855-6867.
[49]SOCI U P,FERNANDES T,HASHIMOTO N Y,et al.MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats[J].Physiological Genomics,2011,43(11):665-673.
[50]VAN ROOIJ E,SUTHERLAND L B,THATCHER J E,et al.Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(35):13027-13032.
[51]XU J,ZHAO J,EVAN G,et al.Circulating microRNAs:novel biomarkers for cardiovascular diseases[J].Journal of Molecular Medicine,2012,90(8):865-875.
[52]MELMAN Y F,SHAH R,DANIELSON K,et al.Circulating microRNA-30d is associated with response to cardiac resynchronization therapy in heart failure and regulates cardiomyocyte apoptosis:a translational pilot study[J].Circulation,2015,131(25):2202-2216.
[53]BAGGISH A L,HALE A,WEINER R B,et al.Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training[J].Journal of Physiology,2011,589(Pt16):3983-3994.
[54]XU T,ZHOU Q,CHE L,et al.Circulating miR-21,miR-378,and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients[J].Oncotarget,2016,7(11):12414-12425.
[55]BEI Y,ZHOU Q,SUN Q,et al.Exercise as a platform for pharmacotherapy development in cardiac diseases[J].Curr Pharm Des,2015,21(30):4409-4416.
[56]TIAN X F,CUI M X,YANG S W,et al.Cell death,dysglycemia and myocardial infarction[J]. Biomedical Reports,2013,1(3):341-346.
[57]RODRIGUES B,LIRA F S,CONSOLIM-COLOMBO F M,et al.Role of exercise training on autonomic changes and inflammatory profile induced by myocardial infarction[J].Mediators of Inflammation,2014,2014:702473.
[58]GOLDHAMMER E,TANCHILEVITCH A,MAOR I,et al.Exercise training modulates cytokines activity in coronary heart disease patients[J].International Journal of Cardiology,2005,100(1):93-99.
[59]Task Force On The Management of Stseamiotesoc,STEG P G,JAMES S K,et al.ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation[J].European Heart Journal,2012,33(20):2569-2619.
[60]MURPHY E,STEENBERGEN C.Mechanisms underlying acute protection from cardiac ischemiareperfusion injury[J].Physiological Reviews,2008,88(2):581-609.
[61]GOMES E C,SILVA A N,DE OLIVEIRA M R.Oxidants,antioxidants,and the beneficial roles of exercise-induced production of reactive species[J].Oxidative Medicine and Cellular Longevity,2012,2012:756132.
[62]LI J,ZHANG H,ZHANG C.Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion:mechanisms and therapeutic implications[J].Journal of Molecular and Cellular Cardiology,2012,52(4):865-872.
[63]LOPEZ-NEBLINA F,TOLEDO A H,TOLEDO-PEREYRA L H.Molecular biology of apoptosis in ischemia and reperfusion[J].Journal of Investigative Surgery,2005,18(6):335-350.
[64]ZHANG K R,LIU H T,ZHANG H F,et al.Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism[J].Apoptosis,2007,12(9):1579-1588.
[65]KWAK H B,KIM J H,JOSHI K,et al.Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart[J].FASEB Journal,2011,25(3):1106-1117.
[66]KWAK H B.Effects of aging and exercise training on apoptosis in the heart[J].Journal of Exercise Rehabilitation,2013,9(2):212-219.
Exercise-induced cardiac regeneration:new therapeutic strategy for cardiovascular diseases
BEI Yihua,XIAO Junjie
(Regeneration and Ageing Laboratory,School of Life Sciences,Shanghai University,Shanghai 200444,China)
Adult mammalian heart has limited regenerative capacity,obviously insufficient to recover cardiomyocyte loss after injury.Exercise can induce cardiac regeneration,not only through promoting cardiomyocyte hypertrophy and renewal while reducing apoptosis,but also through modulating the functions of endothelial cells and fibroblasts. IGF-1/PI3K/Akt signaling,C/EBPβ/CITED4 transcription factors and nitric oxide are essential molecular mechanisms mediating exercise-induced cardiac regeneration.In addition increasing interests are focused on the roles of microRNAs,considered as important biomarkers,in exercise-induced cardiac regeneration.More importantly,exercise-induced cardiac regeneration protects against myocardial infarction,ischemia-reperfusion injury,metabolic cardiomyopathy,and aging-related myocardial injury.Exercise-induced cardiac regeneration may be a potential therapeutic strategy for cardiovascular diseases.
cardiac regeneration;exercise;cardiomyocyte;stem cell
R 541
A
1007-2861(2016)03-0293-09
10.3969/j.issn.1007-2861.2016.03.018
2016-04-20
国家自然科学基金资助项目(81570362);国家自然科学青年基金资助项目(81400647)
肖俊杰(1983—),男,副教授,博士,研究方向为运动诱导的生理性心肌肥大.
E-mail:junjiexiao@shu.edu.cn