刘卫国,夏慧敏,曹光杰
(1.临沂大学 资源环境学院,临沂 276005;2.临沂市城市排水维护管理处,临沂 276000)
末次盛冰期以来长江镇江段古河槽沉积特征
刘卫国1,2,夏慧敏1,曹光杰1
(1.临沂大学 资源环境学院,临沂 276005;2.临沂市城市排水维护管理处,临沂 276000)
选择长江镇江—扬州段作为研究对象。搜集整理了润扬长江大桥地质勘探钻孔96个,根据钻孔资料,绘制了长江古河槽地质剖面示意图。选择了3个典型钻孔分析其分层沉积特征。根据典型钻孔及地质剖面,结合参考文献中的年代,分析了长江镇江段的沉积环境特征。结论认为:镇江段长江古河槽在-77.34 m切割到基岩,约-60 m以下为末次盛冰期时的长江河槽,约-60 m—-40 m为晚冰期河床沉积,约-40 m以上、局部-55 m以上为全新世沉积。古河槽中的沉积物包括末次盛冰期的河床滞留沉积、之后海面上升引起的溯源堆积、全新世最大海侵时的河口砂坝沉积及三角洲平原形成以来的沉积在内,最厚处七十余米。下部的河床滞留沉积、溯源堆积,主要是粗砂砾石、细砂等;上部在河流、潮流及河口环境的共同作用下,形成了粉砂、亚粘土、淤泥质亚粘土等互层的沉积。全新世最大海侵以来,北岸淤积速率快,主河床逐步向南偏移。
末次盛冰期;长江镇江段;古河槽;沉积特征
关于末次冰期的古环境,一直是国内外研究的热点问题。末次冰期的古气候环境是影响河流水文状况及河道演变的重要因素,对河流古河道的研究不仅可以了解一个地区的河流地貌演变历史,同时,对于预测未来环境变化具有重要意义。末次盛冰期,东海海面下降的幅度估算为130 m左右(中国科学院地理研究所和长江水利水电科学研究院,1985;杨怀仁等,1995),由于海面大幅度下降,导致长江下游河床发生强烈的溯源侵蚀,形成末次盛冰期时的长江古河槽。晚冰期以来,海面逐渐回升,在约7—6 ka BP时达到最高海面(耿秀山,1981;严钦尚和洪雪晴,1987),长江约在镇江附近入海。其后长江口向东南推进,长江三角洲逐渐形成。关于长江下游古河谷,已有大量研究成果。方金琪(1990)、杨怀仁等(1995)、曹光杰等(2009,2010,2011,2012)研究认为,南京段长江古深槽,深度达-90 m以下,并对古河谷沉积旋回进行了划分。李从先等(1996,1998,1999,2000)、张家强等(1998)、Li et al(2002)把镇江以下长江古河谷末次盛冰期以来的沉积分为海侵层序与海退层序,具体为河床层序、河漫滩层序、浅海-河口湾层序、河口坝层序、汊道河床层序等。许世远等(1987)、王靖泰等(1981)及同济大学海洋地质系三角洲科研组(1978)研究认为,长江三角洲的发育,具有明显的阶段性,分别为红桥期、黄桥期、金沙期、海门期、崇明期、长兴期,每个发育阶段,皆以河口沙坝为核心,构成了完整的三角洲沉积体系。镇江段作为全新世最高海面时的河口段,沉积环境具有一定的典型性,但目前具体针对镇江地区古河槽沉积的研究很少。本文通过对润扬长江大桥附近钻孔等的分析,探讨末次盛冰期以来长江镇江段古河谷的沉积特征。
1.1 钻孔资料的搜集整理
搜集润扬长江大桥附近(图1)工程地质钻孔96个,内容包括钻孔地理坐标、钻孔深度、不同沉积层的厚度及部分钻孔不同深度上的颗粒级配等。选择ZK19、ZK27和ZK11作为典型钻孔,分析各沉积层特征。
图1 长江镇江段位置示意图Fig.1 Location of the Yangtze River in Zhenjiang reach
1.2 绘制古河槽地质剖面图
在GCS_Krasovsky_1940地理坐标系统下,对钻孔进行配准定位,选出在同一方向上的钻孔。运用ArcGIS9,计算钻孔之间的距离。根据钻孔的距离及深度,分别确定横比例尺、纵比例尺。根据确定的比例尺,绘制润扬长江大桥附近长江横断面地质剖面简图,用Mapinfo软件,绘制地质剖面示意图(图2)。
图2 润扬长江大桥附近古河谷地质剖面示意图Fig.2 The stratigraphical cross-section of the Yangtze River incised-valley near the Runyang Bridge
1.3 相邻断面的地层比对
根据在南京长江四桥附近古深槽两侧阶地上采集的14C样品的年代及参考文献中镇江段钻孔(图1中K1、K2)地层的年代,对镇江段长江河槽沉积层位年代进行比对推断。
长江北汊中的ZK19孔,北汊南北两岸上的ZK27、ZK11孔(图1、图2),沉积厚度大,沉积层较完整,分别对应了长江古深槽及深槽两侧的埋藏阶地,可以作为典型钻孔进行分析。
2.1 ZK19孔分层沉积特征
该孔位于长江北汊现代河床上,孔口标高-14.64 m,孔深96.10 m,沉积层厚62.70 m,到达基岩的高程为-77.34 m,是古河槽到基岩深度的最深点。沉积层自上而下为:
-14.64—-46.64 m为粉砂、细砂互层。-14.64—-23.44 m:细砂,黄灰色,饱和,中等密实,分选性较好;-23.44—-28.54 m:粉砂,黄灰色,饱和,中等密实,分选性较好,含云母碎片;-28.54—-35.94 m:细砂,灰色,饱和,中等密实,分选性一般,含少量中粗砂,偶尔有砾石,砾径2—5 mm,含云母碎片,含磨损的贝壳碎片;-35.94—-37.34 m:亚粘土,黄灰色,饱和,软塑状,具层理,夹薄层粉砂;-37.34—-46.64 m:粉砂,灰色,饱和,中等密实—密实,分选性较好,偶尔含石英质砾石,含云母碎片,具层理,局部夹薄层亚粘土。在-43.64 m含少量腐殖质,部分层位含有海相生物有孔虫及过渡相介形虫。
-46.64—-77.34 m为细砂、砾砂互层,分选性差。-46.64—-53.54 m:细砂,灰色,饱和,密实,分选性较好,含中粗砂,顶部为粉砂;-53.54—-64.74 m:砾砂,灰色、浅灰色,分选性较差,饱和,密实,砾石石英质,亚圆形,含卵石,直径2—3 cm;-64.74—-66.24 m:细砂,灰色,饱和,密实,分选性差,含较多中粗砂颗粒;-66.24—-70.04 m:主要是砾石,浅灰—黄灰色,饱和,密实,砾石石英质,亚圆形,粒径3—6 mm,充填中粗砂为主,含少量卵石,直径5—6 cm不等,底部含卵石较多;-70.04— -75.24 m:粉砂,灰色,饱和,密实,分选性较好,含中粗砂颗粒;-75.24— -77.34 m:砾砂,灰色,饱和,密实,分选性差,充填粉细砂为主,含卵石,亚圆形,直径2— 6 cm。
-77.34 m以下为灰绿杂肉红色碎裂岩。
2.2 ZK27孔分层沉积特征
该孔位于长江北汊南岸世业洲上,孔口标高3.61 m,孔深92.90 m,沉积层厚度60.75 m,钻孔到达基岩处位于古河槽埋藏阶地上。沉积物自上而下为:
3.61 — -31.19 m为粉砂、亚粘土层。3.61—2.71 m:粘土,灰黄色,软塑状,湿润,饱和,含少量腐殖质;2.71—-1.99 m:淤泥质亚粘土,灰色,流塑状,饱和,具层理,夹粉砂薄层;-1.99—-6.19 m:淤泥质亚粘土与粉砂互层(淤泥质亚粘土,灰褐色,流塑状;粉砂,灰色,松散),单层厚度约1—5 mm,含腐殖质;-6.19 —-16.49 m:粉砂,黄灰色、灰色,分选性较好,饱和,中等密实,具层理,顶部为亚砂土,向下颗粒逐渐变粗;-16.49—-31.19 m:粉砂,黄灰色,分选性较好,饱和,中等密实—密实,含云母碎片,向下颗粒变粗,含少量中砂,含有海相生物有孔虫及过渡相介形虫。
-31.19—-57.14 m为细砂、砾砂层。-31.19—-42.49 m:细砂,灰黄色、灰色,分选性较好,饱和,密实,含少量云母碎片及腐殖质,-36.39—-39.39 m含较多中砂;-42.49 —-44.59 m:粉砂夹亚粘土(粉砂,灰色,分选性较好,饱和,中等密实;亚粘土,黄灰色,软塑状);-44.59—-53.39 m:细砂,灰色,饱和,中等密实—密实,分选性较差,含卵砾石,含云母碎片;-53.39—-57.14 m:砾砂,灰色,饱和,密实,分选性差,含少量卵石。-54.49—-54.69 m夹青灰色粉砂。
-57.14 m以下为构造角砾岩。
2.3 ZK11孔分层沉积特征
该孔位于长江北汊北岸上,孔口标高4.47 m,孔深96.35 m,沉积层厚度70.85 m,钻孔到达基岩处位于古河槽埋藏阶地上。沉积物自上而下为:
4.47 — -41.53 m为粉砂、亚粘土层。4.47 —2.17 m:粘土,灰黄色、褐黄色,软塑状,湿润,饱和,含植物根系和灰黑色斑点状腐殖物;2.17—0.43 m:淤泥质亚粘土,灰色、黄灰色,夹亚砂土,饱和,流塑状,具层理,底部夹黄绿色粉细砂;0.43—-7.03 m:粉砂夹亚粘土,青灰色,含灰褐色腐殖质,饱和,松散,上部粉砂为主,较均质;-7.03—-12.53 m:淤泥质亚粘土夹粉砂。淤泥质亚粘土,灰褐色,饱和,流塑状。粉砂,灰色,薄层状,单层厚度一般小于2 cm,稍松—中等密实,其中-8.43—-8.93 m为均质粉砂,分选性好;-12.53—-25.83 m:粉砂,灰色,含云母碎片,饱和,中等密实,具层理,夹亚粘土薄层(-13.53—-16.23 m为黄绿色粉砂,-16.23—-17.53 m、-25.03—-25.53 m为灰褐色软塑状亚粘土夹粉砂);-25.83—-30.53 m:粉砂,青灰色、灰色,含云母碎片,饱和,中等密实,具层理,夹灰褐色软塑状亚粘土和腐殖质薄层;-30.53—-41.53 m:粉砂,黄灰色,含云母碎片,夹腐殖质薄层,饱和,中等密实—密实;部分层位含有海相生物有孔虫及过渡相介形虫。
-41.53— -59.33 m为细砂、中砂。-41.53—-48.03 m:细砂,灰色,饱和,中等密实,分选性较差,含有少量石英质砾石,其中-45.53 —-48.03 m为粉砂,夹灰黑色腐殖质薄层;-48.03—-59.33 m :中砂,灰色,饱和,中等密实—密实,分选性差,含有石英质砾石,亚圆形,由上向下颗粒变粗,其中-55.53—-59.03 m为粗砂,底部为粉砂,夹腐殖质薄层。
-59.33— -66.38 m为细砂砾砂。-59.33—-63.23 m:砾砂,灰色,分选性较好,饱和,密实,充填粉细沙;-63.23—-66.38 m:细沙,灰色,饱和,密实,含有少量石英质砾石,亚圆形。
-66.38 m以下为强风化沉火山凝灰角砾岩。
3.1 古河槽沉积层年代
润扬长江大桥附近地质剖面图显示,古河槽南岸在ZK27、ZK49、ZK53孔附近,有三级古埋藏阶地,高程分别约为-60 m、-40 m、-27 m。上游南京长江四桥附近在约-60 m、-40 m处也有埋藏阶地,在约-60 m埋藏阶地上沉积层样品(-59.33 m)的14C年代为(14682 ± 110 a BP),在约-40.46 m处阶地上沉积物样品的14C年代为(13287 ± 161 a BP)(曹光杰等,2010)。古长江约-60 m、-40 m的埋藏阶地形成于同一时期,据此推断,该段约-60 m以下的河槽为末次盛冰期时的长江河槽,约-40 m 的阶地为晚冰期的埋藏阶地。
世业洲下游长江南岸钻孔K1(图1)深度接近基岩处(-26.57 m)粉质粘土样品中腐殖泥的14C年代为(8925 ± 900 a BP)(陈希祥,2001);北岸K2孔(图1)约在-65 m深度到达基岩,在约-55 m处为明显不整合面,下部为砂砾层,上部为粉细砂层,在-54.68 m处细砂中腐殖泥的14C年代为(2150 ± 60 a BP)(陈希祥,2001)。据此推断,该段河槽约-60 m至约-40 m为晚冰期沉积,约-40 m以上,江北局部约-55 m以上的沉积,属于全新世以来的沉积。
3.2 沉积层与沉积环境
据典型钻孔及古河槽地质剖面分析,镇江段长江古河槽的沉积物包括末次盛冰期时的河床滞留沉积、之后海面上升引起的溯源堆积、全新世最大海侵时的河口砂坝沉积及三角洲平原形成以来的沉积在内,最厚处七十余米。剖面自下而上依次为粗砂砾石、细砂、粉细砂互层、粉砂、淤泥质亚粘土、亚粘土与粘土等,下部细砂、粗砂、砾石等交错分布,分选性差。
末次冰期最盛期,由于海面下降,侵蚀基准面降低,长江纵比降大,流水动力作用强劲,携砂能力强,沉积了较粗颗粒的卵砾石等河床滞留沉积物。晚冰期,随着海面波动中回升,河流开始溯源堆积和侧蚀,沉积物颗粒较粗,分选性较差。前期河床滞留沉积,后期溯源加积与侧蚀,表明河水搬运能力由强到弱,水面由窄到宽的沉积搬运过程。
全新世最高海面时,长江河口位于镇江、扬州附近,形成河口砂坝沉积。在河口砂坝分流影响下,长江分为南北两个汊道,并开始了涨、落潮分流,在科氏力的影响下,涨潮流北偏,落潮流南偏。涨潮流与径流相互削弱,致使北汊道逐渐衰退。该河段全新世剖面下段的粉细砂层即相当于海侵期的河口沙坝及边滩沉积,而上段的粉砂与淤泥质亚粘土层是沙坝被岸滩归并后的三角洲滨岸沉积。滨岸平原形成后,虽大幅度的沉积与侵蚀水动力条件已不具备,但局部性新构造运动及地形、微地貌的改变,均影响着河谷的均衡调整。北岸滨岸平原地势平坦,入江水道密集,季节性径流携带有大量泥沙入江,粘土、亚粘土、亚砂土不断叠积,使北岸淤积速度加快,滩地日愈拓宽。南岸临近山丘,地势虽起伏较大,但入江泥沙量远小于北岸,在落潮流强大的冲刷作用下,致使长江主汊逐渐南移。河道在自北而南总趋势下,曾受局部因素影响而有多次的南北往复摆动,现今仍在向南侵蚀。从K1孔、K2孔的两个样品14C年代看,K2孔样品采集点的深度大,但样品14C年代小,说明了长江北岸K2孔附近原是主河床,全新世以来北岸淤积速率快,河道逐渐向南侵蚀的过程。
下部的细砂层与下伏层呈侵蚀不整合接触,反映为沉积不连续、侵蚀缺失。上部的亚粘土与粉砂互层段含较多的腐殖质及海陆过渡相生物贝壳碎屑,反映了水流周期性波动、水生生物发育的潮汐影响的边滩环境。含有海相生物有孔虫及过渡相介形虫,反映了半咸水潮间带环境。粉细砂含有被磨蚀的贝壳碎片,反映了边滩浪击的水动力条件、潮汐作用明显。底部细砂层含少量卵砾石,且南部与基岩接触,表明沉积前曾为强烈剥蚀环境,所含卵砾石系晚冰期被侵蚀冲刷后的滞留沉积物。
镇江段长江古河槽最深处在-77.34 m切割到基岩,约-60 m以下为末次盛冰期时的长江河槽,约-60 m—-40 m为晚冰期河床沉积,约-40 m以上、江北局部-55 m以上为全新世沉积。
古河槽中的沉积物包括末次盛冰期的河床滞留沉积、之后海面上升引起的溯源堆积、全新世最大海侵时的河口砂坝沉积及三角洲平原形成以来的沉积在内,最厚处七十余米。下部的河床滞留沉积、溯源堆积,主要是粗砂砾石、细砂等;上部在河流、潮流及河口环境的共同作用下,形成了粉砂、亚粘土、淤泥质亚粘土等互层的沉积。
全新世最大海侵以来,北岸淤积速率快,主河床逐步向南偏移。
曹光杰, 爨景波, 李彦彦. 2012. 长江江苏段末次盛冰期古河槽特征[J].地理科学, 32(8): 986 – 992. [Cao G J, Cuan J B, Li Y Y. 2012. Characteristics of the Yangtze River Paleo-valley in Jiangsu Province in the Last Glacial Maximum [J].Scientia Geographica Sinica, 32(8): 986 – 992.]
曹光杰, 王 建, 李彦彦. 2010. 南京长江四桥附近长江古河谷沉积层序[J].地层学杂志, 34(4): 389 – 393. [Cao G J, Wang J, Li Y Y. 2010. Sedimentary sequences of the Yangtze River Paleo-valley near the No.4 Nanjing Yangtze River Bridge since LGM [J].Journal of Stratigraphy, 34(4): 389 – 393.]
曹光杰, 王 建, 张学勤, 等. 2009. 末次盛冰期长江南京段河槽特征及古流量[J].地理学报, 64(3): 331 – 338. [Cao G J, Wang J, Zhang X Q, et al. 2009. Characteristics and runoff volume of the Yangtze River's Paleovalley at Nanjing reach in the Last Glacial Maximum [J].Acta Geographica Sinica, 64 (3): 331 – 338.]
曹光杰, 张金宝. 2011. 末次盛冰期以来长江下关—栖霞山段下切深度及沉积旋回[J].冰川冻土, 33(2): 432 – 435. [Cao G J, Zhang J B. 2011. The downcutting depth and sedimentary cycles of the Yangtze River's Paleochannel in the Xiaguan—Qixia Mountain reach since the Last Glacial Maximum [J].Journal of Glaciology and Geocryology, 33(2): 432 – 435.]
陈希祥. 2001. 镇江—扬州长江河谷第四系沉积演变特征[J].地层学杂志, 25(1): 51 – 54. [Chen X X. 2001. Evolutionary characteristics of the quaternary sediments in the Yangtze valley between Yanzhou and Zhenjiang [J].Journal of Stratigraphy, 25(1): 51 – 54.]
方金琪. 1990. 晚冰期以来海面上升对长江中下游河段影响的数值模拟[J].中国科学( B辑), 19(8): 870 – 878. [Fang J Q. 1990. The numerical analog of the sea-level rise affecting the Yangtze River middle and lower reaches since late iceage [J] .Science in China ( Series B), 19(8): 870 – 878 .]
耿秀山. 1981.中国东部晚更新世以来的海水进退[J].海洋学报, 3(1): 114 – 128. [Geng X S. 1981. The transgression and regression since the Late Pleistocene of east China [J].Acta Oceanologica Sinica, 3(1): 114 – 128.]
李从先,陈庆强,范代读,等. 1999. 末次盛冰期以来长江三角洲地区的沉积相和古地理[J].古地理学报, 1(4): 12 – 25. [Li C X, Chen Q Q, Fan D D, et al. 1999. Palaeogeography and palaeoenvironment in Changjiang Delta since Last Glaciation [J].Journal of Palaeogeography, 1(4): 12 – 25.]
李从先,范代读,张家强. 2000. 长江三角洲地区晚第四纪地层及潜在环境问题[J].海洋地质与第四纪地质, 20(3): 1 – 7. [Li C X, Fan D D, Zhang J Q. 2000. Late Quaternary stratigraphical framework and potential environmental problems in the Yangtze Delta Area [J].Marine Geology & Quaternary Geology, 20(3): 1 – 7.]
李从先, 汪品先. 1998.长江晚第四纪河口地层学研究[M].北京:科学出版社: 12. [Li C X, Wang P X. 1998. Researches on stratigraphy of the Late Quaternary period in Yangtze River mouth [M]. Beijing: Science Press: 12.]
李从先, 张桂甲. 1996. 晚第四纪长江三角洲高分辨率层序地层学的初步研究[J].海洋地质与第四纪地质, 16(3): 13 – 24. [Li C X, Zhang G J. 1996. Researches on high resolution sequence stratigraphy of the Yangtze Delta during Late Quaternary period [J].Marine Geology & Quaternary Geology, 16(3): 13 – 24.]
同济大学海洋地质系三角洲科研组. 1978. 全新世长江三角洲的形成和发育[J].科学通报, 23(5): 310 – 314. [Study Group on the Delta of the Marine Geology Department in Tongji University. 1978. The formed and growth of Yangtze Delta in Holocene Epoch [J].Chinese Science Bulletin, 23(5): 310 – 314.]
王靖泰, 郭蓄民, 许世远, 等. 1981. 全新世长江三角洲的发育[J].地质学报, 55(1): 67 – 81. [Wang J T, Guo X M, Xu S Y, et al. 1981. Evolution of the Holocene Changjiang Delta [J].Acta Geologica Sinica, 55(1): 67 – 81.]
许世远, 王靖泰, 李 萍. 1987. 论长江三角洲发育的阶段性[M] //严钦尚, 许世远. 长江三角洲现代沉积研究. 上海: 华东师范大学出版社: 264 – 277. [Xu S Y, Wang J T, Li P. 1987. The evolution stage of the Yangtze River Delta [M]// Yan Q S, Xu S Y. Recent Yangtze Delta Deposits. Shanghai: East China Normal University Press: 264 – 277.]
严钦尚, 洪雪晴. 1987. 长江三角洲南部平原全新世海侵问题[M] //严钦尚, 许世远. 长江三角洲现代沉积研究. 上海:华东师范大学出版社: 92 – 102. [Yan Q S, Hong X Q. 1987. The transgression of northern plain in Yangtze Delta during Holocene Epoch [M]// Yan Q S, Xu S Y. Recent Yangtze Delta Deposits. Shanghai: East China Normal University Press: 92 – 102.]
杨怀仁, 徐 馨, 杨达源, 等. 1995. 长江中下游环境变迁与地生态系统[M].南京:河海大学出版社. [Yang H R, Xu X, Yang D Y, et al. 1995. Environmental changes and ecosystem in the Yangtze River's middle and lower reaches [M]. Nanjing: Hohai University Press.]
张家强, 张桂甲, 李从先. 1998. 长江三角洲晚第四纪地层层序特征[J].同济大学学报, 26(4): 438 – 442. [Zhang J Q, Zhang G J, Li C X. 1998. Characteristics of the Late Quaternary stratigraphic sequence in the Changjiang River Delta area [J].Journal of Tongji University, 26(4): 438 – 442.]
中国科学院地理研究所,长江水利水电科学研究院. 1985.长江中下游河道特性及其演变[M].北京: 科学出版社. [Chinese Academy of Sciences. Institute of Geography, Yangtze River Institute of Water Resources and Hydro-Power Research. 1985. Channel properties and evolution in the Yangtze River's Middle and Lower Reaches [M]. Beijing: Science Press.]
Li C X, Wang P, Sun H P, et al. 2002. Late Quaternary incisedvalley fill of the Yangtze delta (China): its stratigraphic framework and evolution [J].Sedimentary Geology, 152: 133 – 158.
The Yangtze river's paleo-valley sedimentary characteristics in Zhenjiang reach since the Last Glacial Maximum
LIU Weiguo1,2, XIA Huimin1, CAO Guangjie1
(1. College of Resources & Environment, Linyi University, Linyi 276005, China; 2. Drainage Maintenance Management Offi ce of Linyi City, Linyi 276000, China)
Background, aim, and scopeThe palaeoenvironment during the Last Glacial has always been a hot research topic both at home and abroad. Research on paleochannel can not only help to understand the river evolutionary history of an area, but also function as an important means of predicting the environmental changes in the future. During the Last Glacial Maximum, the large drop in base level of the East China Sea led to strong headward erosion in the downstream of the Yangtze River so that the river formed a deep incised valley. In order to investigate the sedimentary characteristics of the incised valley in the lower reaches of the Yangtze River, the Zhenjiang reach of the Yangtze River was selected as the research reach.Materials and methods96 geological exploration boreholes were collected from the Runyang Yangtze River Bridge and then the stratigraphical cross-section of the Yangtze River incisedvalley was plotted based on the borehole data. 3 typical boreholes were selected to analyze their layered sedimentary characteristics. According to the typical boreholes and the stratigraphical cross-section, combined with the sediment dating results known from relevant references, the characteristics of thesedimentary environment of the Yangtze River in the Zhenjiang reach was analyzed and researched.ResultsThe incised valley of the Yangtze River in the Zhenjiang reach cuts into the bedrock at -77.34 m and the stratigraphical cross-section reveals the existence of the first, the second and the third buried bedrock terraces at about -60 m, -40 m and -27 m. The thickness of the sediments in the deep incised valley reached more than 70 meters.DiscussionNear the Nanjing No. 4 Bridge, the14C age of the sediments in buried terraces at about -63 m is (14682 ± 110) a BP, (13287 ± 161) a BP at about -40.46 m. The buried terraces at about -60 m and -40 m of the ancient Yangtze River formed in the same period. Therefore, the deep incised valley that is below -60 m is estimated to form the Yangtze River Valley at the LGM, the terraces at about -40 m is estimated to form the buried bedrock terraces in the Late Glacial.ConclusionsIn the Zhenjiang reach, the deep incised valley that is below -60 m is estimated to form the Yangtze River Valley at the LGM, the deposit at about -60 m—-40 m is believed to have been shaped since the Late Glacial and above about -40 m (locally -55 m) shaped since the Holocene. The total thickness of the sediments in the deep incised valley is more than 70 meters including the riverbed lag deposition during the LGM, headward deposition caused by sea-level rising, estuary sand dam deposition at the maximum transgression during the Holocene and the deposition since the formation of delta plain. The composition of the riverbed lag deposition and headward deposition in the lower part is mainly sandgravel, fi ne sand and so on; silty sand, loam, muddy loam and other composition in the upper part resulted from the combined action of river, tide and estuarine environment. Since the Holocene, the deposition rate in the north bank of the Yangtze River became faster and the main riverbed gradually shifted to the south.Recommendations and perspectivesThe conclusion is not persuasive enough due to the lack of direct dating data. Future research will focus on choosing the appropriate place for drilling and collecting samples and then further analyzing the age of sediments as well as the characteristics of sedimentary environment.
Last Glacial Maximum; Zhenjiang reach of the Yangtze River; Paleo-valley of the Yangtze River; sedimentary characteristics
CAO Guangjie, E-mail: guangjiecao@163.com
10.7515/JEE201606004
2016-05-24;录用日期:2016-06-20
Received Date:2015-05-24;Accepted Date:2016-06-20
国家自然科学基金项目(41372182,40871010)
Foundation Item:National Natural Science Foundation of China (41372182, 40871010)
曹光杰,E-mail: guangjiecao@163.com