赵淑雨,铁学煕,,曹军骥
(1.中国科学院地球环境研究所 中国科学院气溶胶化学与物理重点实验室,西安 710061;2.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;3. National Center for Atmospheric Research, Boulder, CO, USA;4.西安交通大学 人居环境与建筑工程学院,西安 710049)
2008—2010年冬季关中地区黑碳气溶胶时间变化的成因分析
赵淑雨1,2,铁学煕1,2,3,曹军骥1,4
(1.中国科学院地球环境研究所 中国科学院气溶胶化学与物理重点实验室,西安 710061;2.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;3. National Center for Atmospheric Research, Boulder, CO, USA;4.西安交通大学 人居环境与建筑工程学院,西安 710049)
本文应用2008—2010年冬季黑碳浓度、已有排放数据和同时期气象资料(风速风向、边界层高度)分析了关中地区冬季平均黑碳浓度年际变化受局地排放、风速风向和边界层高度的影响。结果表明,2010年黑碳浓度明显高于2008年和2009年,其中局地排放的增加使得黑碳浓度明显增加,贡献率约为50%;2010年边界层高度的明显降低,抑制了近地面污染物的扩散,加剧了地面黑碳的累积。此外,关中地区冬季风速较小、风场以旋转风和辐合风为主,不利于污染物的扩散,会进一步加剧污染物的累积和聚集。因此,对于冬季空气质量的改善,需根据局地风场和边界层状况,合理调整主要排放源的排放量,如在不利天气条件下加强对排放的管控。
黑碳;排放;风速风向;边界层高度;空气污染
近年来,颗粒物(PM2.5)污染已成为我国大气环境中的重要问题,这对国家外交形象,民众生活质量以及健康状况,区域天气、气候变化等均产生深刻影响。观测资料表明,我国东部颗粒物污染水平处于全球之最,平均浓度高出发达国家1—2个数量级(曹军骥,2012)。针对如此严峻的空气环境,治理与防控已成为国家发展规划中的重要议题,2013年国务院已制定《大气污染防治行动计划》,重点改善“三区十群”这些关键区域的空气污染状况。关中地区属于“三区十群”重点地区之一,该地区城市群集中,人口较为密集,冬季空气污染状况十分严重,所以对这一地区的污染成因分析也极为重要。
黑碳是PM2.5的重要组成成分,占PM2.5质量浓度的比例在3%—6%(Cao et al,2007)。黑碳不参与化学反应,其浓度主要受排放源和气象条件两个因素的影响,排放源主要指源强和排放量(Gong et al,2010);气象条件包括从源区到受体区的大气环流变化,大气输送路径上的清除过程以及受体区自身的地面风特征、边界层与自由大气层之间垂直交换强度(Gong et al,2010;Voulgarakis et al,2010;Zhao et al,2012;Tie et al,2013,2015)。我国城市地区空气污染期间的观测表明,污染物在稳定天气形势下,2—3天内快速累积,导致重污染发生(Tao et al,2012)。当重污染发生时,局地风速风向和边界层高度是影响局地扩散条件的两个关键的气象参数。局地小风和浅边界层会抑制地面颗粒物的传输和扩散,使得污染物聚集在源区附近,导致污染发生(Quan et al,2013;Zhao et al,2013)。Wehner et al(2008)发现局地的风速风向对北京市的颗粒物浓度有重要作用,当北京市盛行弱南风时,地面颗粒物往往较高,究其原因是弱南风将北京南部地区的污染物输送至此,较低风速会导致污染物在地面进一步累积。
黑碳与辐射存在相互作用和反馈,高浓度颗粒物会减弱地面对入射太阳辐射的吸收,使得地表冷却,抑制边界层的发展(Quan et al,2013;Tie et al,2015)。已有研究表明,近地层气溶胶通过冷却边界层大气,加热自由大气使得大气层结更加稳定,从而使得边界层内的湍流扩散减少52%,边界层高度降低33%(Wang et al,2015)。重污染期间,边界层高度和湍流扩散与PM2.5质量浓度的显著反相关性说明边界层高度对颗粒物扩散的抑制对灰霾形成有重要贡献,因为伴随着低层大气层结的稳定,地面污染物会进一步累积,污染物和边界层高度的反馈作用直接导致污染持续时间延长,污染物保持在非常高的浓度水平(Wang et al,2015;Zhang et al,2015)。
目前国内多数研究集中在华北平原、长三角和珠三角等发达地区,对于关中地区黑碳浓度受当地排放、气象条件等影响的研究较少。本文旨在定性分析关中地区的黑碳排放和气象要素对该地区冬季黑碳浓度的影响,这为其他组分的成因分析提供了新方法,也为该地区颗粒物污染问题的防治提供科学支撑。
黑碳采样在中国科学院地球环境研究所进行,仪器是大气总悬浮颗粒物采样器(MiniVol,AirmetricsTM,USA),安装在楼顶,距离地面约10 m高。气泵流速调至5 L · min-1,频率为每日一次,流程如下:将直径为47 mm的石英滤膜(Whatman®QMA)固定在采样器上,其中石英滤膜在600℃烘干箱中预加热24 h,以消除可能存在的含碳物质,然后将其封装在玻璃片中;采样后,首先在滤膜上颗粒物沉积部位打孔,取下面积为0.526 cm2的样本,然后利用DRI®2001热-光碳分析仪进行分析,详细步骤见Chow et al(2004)。
黑碳采样同期的泾河、咸阳、凤翔和华山气象站资料(气温、风速风向)源自美国大气海洋局(National Oceanic and Atmospheric Admminstration,NOAA) 3小时常规观测资料,网页如下:http://gis.ncdc.noaa.gov/map/viewer/。关中地区南倚秦岭,北临黄土高原,西起宝鸡,东至潼关,城市海拔在325—800 m,东西长约300 km,西窄东宽,总面积约3.9×104km2。因地质构造,关中属于断层陷落区,后经渭河及其支流泾河、洛河等冲击形成平原地形(图1)。泾河气象站是距离黑碳采样点最近的气象站,位于西安市正北方向的泾河经济开发区,南邻渭河,周围地势平坦开阔,无高大建筑群,所以该站点的气象记录代表西安市的基本气象条件,咸阳和凤翔分别代表咸阳市和宝鸡市的基本状况,华山站属于高山站,记录的是关中地区的本底状况,这四个站点整体代表了关中地区的气象条件。同时选取了同期欧洲中长期天气预报中心(European Centre for Medium-range Weather Forecasts,ECMWF)再分析资料,如10 m风速和边界层高度,该资料空间分辨率为0.125°×0.125°,数据下载链接:http://www.ecmwf.int/products/data/。
图2给出了2008—2010年冬季关中地区黑碳浓度的年际变化。冬季黑碳浓度表现出逐年增加,平均浓度在11 μg · m-3左右,相应的PM2.5浓度约在180 μg · m-3,明显高于国家空气二级质量标准(日平均值小于75 μg · m-3,年平均值小于35 μg · m-3)。因为黑碳浓度主要受排放和气象条件的影响,所以本文主要从这两方面来解释2008—2010年冬季黑碳浓度增加的原因。
图3给出了2008—2010年冬季黑碳排放的月变化和年际变化。首先,12月份是每年冬季黑碳排放量最高的月份,自然也是全年排放最高的月份。其次,关中地区的黑碳排放总量自2008年至2010年有明显的增加。黑碳是一次排放污染物,明显受到排放的影响,所以该时期内黑碳排放的增加是该地区黑碳浓度增加的主要原因之一。图4给出了月平均黑碳排放量与黑碳浓度的相关关系,二者有显著的正相关性,但散点图分布较为分散,说明二者不是严格的线性相关关系。表1计算了2008—2010冬季黑碳排放和黑碳浓度变化的百分比。2009年冬季黑碳排放量比2008年增加了8.8%,相应的黑碳浓度增加了3.1%,说明2009年冬季的气象条件有利于污染物的扩散传输,改善了该地区的空气质量;2010年冬季黑碳排放量比2009年增加了10.3%,相应的黑碳浓度增加了20.8%,说明2010年黑碳浓度的明显增加,除了受到排放明显增加的影响外,也明显受到不利的气象条件的影响,这二者对黑碳浓度的贡献百分比相当。
图1 关中地形及观测站点分布,黑色方框代表关中地区,三角为中国科学院地球环境研究所观测点(IEECAS),圆圈为气象站点(泾河、咸阳、凤翔和华山站)Fig.1 Topography of Guanzhong region andin-situblack carbon (BC) measurement site (the triangle, IEECAS) and weather stations (the circles, Jinghe, Xianyang, Fengxiang and Huashan)
图2 2008—2010冬季关中地区黑碳浓度的年际变化Fig.2 Annual variation of winter BC concentration from 2008 to 2010
图3 2008—2010冬季关中地区的黑碳排放Fig.3 Annual variation of BC emission from 2008 to 2010 in winter in the Guanzhong region
表2统计了2008—2010年关中地区泾河、咸阳、宝鸡和华山4个气象站在冬季的主导风向、次风向、平均风速和平均气温。首先,气温表现出逐年增加,且气温在2009年有明显的升高,这表明2009和2010年冬季冷空气较2008年偏弱,冷空气活动弱说明大气环流场较为稳定,不利于污染物的扩散输送;其次,关中城市地区(除华山站外)的风速在2.5 m · s-1左右,风力为二级,不利于污染物的水平输送;再次,关中地区的主导风向以旋转风为主,容易导致污染物的累积;最后,城市地区的主导风向和次风向通常是反向的,这说明城市地区容易出现辐合风,易造成污染物的聚集。综上所述,2009年和2010年关中地区冬季的风场不利于污染物的扩散传输。图5给出了根据ECMWF再分析资料计算的整个关中地区的平均风速和黑碳浓度的相关性分析,二者没有显著相关性。但日平均黑碳浓度高值区有明显的风速分割阈值,当风速大于3.3 m · s-1时(三级风),日平均黑碳浓度明显降低,这表明关中地区风力达到三级,一般不会出现重污染天气。2008—2010年冬季的平均风速没有明显变化,在1.8—2.2 m · s-1(图6),不足以对黑碳浓度产生明显影响。
图4 黑碳排放和浓度的散点分布及相关性Fig.4 Scatter distribution of BC concentration and emission, the solid line for the linear regression
表1 2008—2010 冬季黑碳平均浓度和总排放量以及年际变化百分比Tab.1 BC concentration and emission, and the percentage of annual increment in winter from 2008 to 2010
表2 关中地区气象站记录的2008—2010冬季盛行风向、次风向、平均风速和气温Tab.2 Annual variations of observed prevailing and secondary wind direction, wind speed and temperature at weather stations in the Guanzhong region in winter from 2008 to 2010
年份Year气温Temperature / ℃2008WNWW4.79-6.04 2009WNWSSW5.15-3.14 2010WWNW5.78-2.21华山 Huashan主风向Prevailing wind direction次风向Secondary wind direction风速Wind speed /(m · s-1)
图7给出了日平均黑碳浓度和边界层高度的相关性分析。结果表明,二者表现出显著的负指数相关性,随着边界高度的增加,黑碳浓度迅速降低,当边界层高度升高至1000 m,黑碳浓度约为4 μg · m-3;对应的PM2.5浓度通常不超过70 μg · m-3。边界层高度的发展主要受到日间太阳辐射的影响,日间发展的边界层在夜间因为辐射冷却等因素,边界层高度会降低,易造成污染物在近地层聚集,本文重点考察了日间边界层高度的发展对污染物垂直扩散的影响。
图5 日平均风速和黑碳浓度的散点分布Fig.5 Scatter distributions of daily mean wind speed and BC concentration in the Guanzhong region
图6 关中地区2008—2010冬季平均风速的年际变化Fig.6 Annual variation of mean wind speed from 2008 to 2010 in the Guanzhong region
图7 日平均边界层高度和黑碳浓度的散点分布以及二者的非线性相关性Fig.7 Scatter distributions of daily mean planetary boundary layer height and BC concentration, and the non-linear fi tting between them in the Guanzhong region
图8 月平均的日间边界层高度和日平均黑碳浓度的散点分布以及二者的非线性相关性Fig.8 Scatter distributions of monthly mean diurnal planetary boundary layer height and daily mean BC concentration, and the non-linear fi tting between them in the Guanzhong region
图8计算了月平均的日间边界层高度与黑碳浓度的相关性,二者的相关性与图7类似,说明了日间边界层高度对近地层黑碳扩散的影响。结合年平均黑碳浓度的逐年变化,分析了日间边界层高度的逐年变化(图9),发现二者的变化规律完全相反。2010年冬季日间边界层高度相较于2008年和2009年降低了40多米,这表明污染物的扩散在垂直方向被明显压缩了,而水平风速却没有明显变化,所以2010年日间边界层高度的明显降低对该年冬季黑碳浓度的增加有明显贡献。
图9 关中地区日间边界层高度的年际变化Fig.9 Annual variation of mean daytime planetary boundary layer height from 2008 to 2010 in the Guanzhong region
本文对2008—2010年关中地区冬季黑碳浓度的变化规律及其成因做了半定量分析,主要从局地排放和关键气象要素(风速风向、边界层高度)两方面来解释:
(1)2008—2010年,冬季平均黑碳浓度表现出明显增加,这与冬季黑碳排放的逐年增加密切相关,排放的逐年增加对黑碳浓度逐年增加的贡献约在50%;排放量的变化对黑碳浓度的影响不遵循严格的线性关系,还受到气象要素的显著影响;
(2)关中地区冬季的旋转风和辐合风场,且风速较小,不利于污染物的水平输送;边界层高度与黑碳浓度表现出显著的非线性负相关性,低边界层高度会明显限制污染物的垂直扩散,2010年明显降低的日间边界层高度是该地区冬季黑碳浓度明显较高的重要原因。
曹军骥. 2012. 我国PM2.5污染现状与控制对策[J].地球环境学报, 3(5): 1031 – 1036. [Cao J J. 2012. Pollution status and control strategies of PM2.5in China [J].Journal of Earth Environment, 3(5): 1031 – 1036.]
Cao J J, Lee S C, Chow J C, et al. 2007. Spatial and seasonal distributions of carbonaceous aerosols over China [J].Journal of Geophysical Research, 112(D22S11), doi:10.1029/2006JD008205.
Chow J C, Watson J G, Chen L W A, et al. 2004. Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols [J].Environmental Science & Technology, 38(16): 4414 – 4422.
Gong S L, Zhao T L, Sharma S, et al. 2010. Identification of trends and interannual variability of sulfate and black carbon in the Canadian High Arctic [J].Journal of Geophysical Research, 115(D07305), doi:10.1029/2009JD012943.
Quan J N, Gao Y, Zhang Q, et al. 2013. Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations [J].Particuology, 11: 34 – 40.
Tao M H, Chen L F, Su L, et al. 2012. Satellite observation of regional haze pollution over the North China Plain [J].Journal of Geophysical Research, 117(D12203), doi:10.1029/2012JD017915.
Tie X X, Geng F, Guenther A B, et al. 2013. Megacity impacts on regional ozone formation: observations and WRF-Chem modeling for the MIRAGE-Shanghai field campaign [J].Atmospheric Chemistry and Physics, 13: 5655 – 5669.
Tie X X, Zhang Q, He H, et al. 2015. A budget analysis of the formation of haze in Beijing [J].Atmospheric Environment, 100: 25 – 36.
Voulgarakis A, Savage N H, Wild O, et al. 2010. Interannual variability of tropospheric composition: the influence of changes in emissions, meteorology and clouds [J].Atmospheric Chemistry and Physics, 10: 2491 – 2506.
Wang Y H, Liu Z R, Zhang J K. 2015. Aerosol physicochemical properties and implications for visibility during an intense haze episode during winter in Beijing [J].Atmospheric Chemistry and Physics, 15: 3205 – 3215.
Wehner B, Birmili W, Ditas F, et al. 2008. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004—2006 [J].Atmospheric Chemistry and Physics, 8: 6155 – 6168.
Zhang Q, Quan J N, Tie X X, et al. 2015. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China [J].Science of the Total Environment, 502: 578 – 584.
Zhao T L, Gong S L, Huang P, et al. 2012. Hemispheric transport and infl uence of meteorology on global aerosol climatology [J].Atmospheric Chemistry and Physics, 12: 7609 – 7624.
Zhao X J, Zhao P S, Xu J, et al. 2013. Analysis of a winter regional haze event and its formation mechanism in the North China Plain [J].Atmospheric Chemistry and Physics, 13: 5685 – 5696.
Causes for temporal variation of 2008—2010 black carbon concentrations during winter in the Guanzhong region
ZHAO Shuyu1,2, TIE Xuexi1,2,3, CAO Junji1,4
(1. Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 3. National Center for Atmospheric Research, Boulder, CO, USA; 4. School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China)
Background, aim, and scopeGuanzhong region in mid-western China is experiencing severe air pollution during wintertime in recent years, so the region is listed on the national key region where air pollution is urgently needed to improve. However, compared to the more developed eastern China, limited studies are available in this region. Thus, how air pollutions form and which factors affect air pollutions should be paid more attention. This study usedin-situblack carbon (BC) concentration, BC emission inventories, and meteorological parameters in the Guanzhong region, aiming to analyze characteristics of annual variation of BCconcentration during wintertime and investigate how the emission and meteorological parameters (winds and planetary boundary layer, PBL) affect BC concentration.Materials and methodsBlack carbon was measured by an aethalometer (Model AE-16, Magee Scientifi c Company, Berkley, CA, USA). The instrument used quartzfi ber fi lter tape transmission at 880 nm wavelength, with a 5-min resolution, 5 L · min-1of airfl ow rate and ±2% accuracy. Black carbon concentration is derived from the linear relationship between BC concentration and light attenuation absorption coefficient. The 3-hour temperature, wind speed and direction are observed at weather stations in the Guanzhong region, and data are available from http://gis.ncdc.noaa.gov/map/viewer/. Out of PBL height observation during BC measurement, we use reanalysis PBL heights with a spatial resolution of 0.125° × 0.125° from European Centre for Medium-range Weather Forecasts (ECMWF). The data is available at http:// www.ecmwf.int/products/data/. In this study, we mainly use the statistics and the correlation analysis to calculate the effects of BC emission, winds and PBL heights on BC concentration.ResultsBlack carbon concentration and BC emission in winter both have an obvious increase from 2008 to 2010, but with quite different increase percentages. Prevailing wind direction has no obvious annual variation but the wind speed has the minimum in 2009 and the maximum in 2010. Planetary boundary layer height at daytime has a decline from 2008 to 2010, and the drop reaches to as high as 40 m.DiscussionIncrease annual BC concentration from 2008 to 2010 is closely associated with gradually increased BC emission, but the correlation between BC concentration and emission is non-linear. For example, compared to BC concentration at 2009, BC concentration at 2010 increases by 20.8%, but the emission increases by 10.3%. This is because BC concentration is not only affected by the emission, but also affected by the meteorological conditions. The obvious drop of daytime PBL height from 2008 to 2010 can explain the rest difference. The correlation between BC concentration and PBL heights illustrates that BC concentration exponentially decreases as the PBL heights increase.ConclusionsIncreased BC emission at 2010 contributes almost 50% to increased BC concentration. On the other hand, PBL heights in winter at 2010 decreased by 40—50 m than that at 2008 and 2009, and decreased PBL heights constrains pollutants (e.g., BC) into the surface layer, enhancing BC accumulation. In addition, rotated winds or convergent winds with low speeds in winter over the whole Guanzhong region further enhance BC aggregation and accumulation. Hence, better and healthy air quality in winter in the Guanzhong region needs to comprehend local wind and planetary boundary layer development, and then reasonably control emission sources.Recommendations and perspectivesThis study provides a new method to analyze the formation and infl uence factors for other trace components of air pollution, which is helpful for the government to make scientifi c policy to prevent and control the air pollution.
black carbon; emission; wind; planetary boundary layer height; air pollution
ZHAO Shuyu, E-mail: zhaosy@ieecas.cn
10.7515/JEE201606007
2016-07-11;录用日期:2016-10-20
Received Date:2016-07-11;Accepted Date:2016-10-20
中国科学院地球环境研究所黄土与第四纪地质国家重点实验室开放基金(SKLLQG1429);国家自然科学基金项目(41275186,41430424)
Foundation Item:Open Foundation of State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (SKLLQG1429); National Natural Science Foundation of China (41275186, 41430424)
赵淑雨,E-mail: zhaosy@ieecas.cn