骨头14C-AMS测年前处理方法的研究进展

2016-03-21 05:16熊晓虎付云翀牛振川卢雪峰
地球环境学报 2016年6期
关键词:骨胶原磷灰石腐殖酸

杜 花,熊晓虎,付云翀,牛振川,卢雪峰

(1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;2. 陕西省加速器质谱技术及应用重点实验室,西安加速器质谱中心,西安 710061)

骨头14C-AMS测年前处理方法的研究进展

杜 花1,2,熊晓虎1,2,付云翀1,2,牛振川1,2,卢雪峰1,2

(1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;2. 陕西省加速器质谱技术及应用重点实验室,西安加速器质谱中心,西安 710061)

骨头是考古和地质领域常用的测年物质之一,由于它松散的结构特点,使得在埋藏过程中极易受到外界年轻碳的污染,从而造成14C测年的不可靠性,但是由于其在考古14C测年中的不可或缺性,因此需要对其测年的可靠性进行系统的研究,通过有效的14C-AMS测年前处理方案移除污染以获得准确的年龄一直是研究的热点和难点问题。骨头的埋葬环境及保存状态的好坏直接影响它测年结果的准确度,于是选用何种测年物质和分离技术及样品状况之间的权衡甚为重要。本文主要针对骨头的14C-AMS测年发展进行简要的综述,分别从骨化石在埋葬过程中的组成及性质变化、骨胶原的分析评价技术及各种前处理方案进行了介绍,并对其当前的发展状况及纯化新技术进行了分析,此外也提及了采用逐步燃烧法作为一种新方法的尝试,认为此方法为骨头可靠14C测年物质的获取提供了一条新途径,希望本文能对以后的测年工作提供指导和帮助。

骨头;14C-AMS;骨胶原;XAD-2树脂;超滤;氨基酸;磷灰石

自20世纪50年代放射性碳测年技术发展初期,骨头就被认为是理想的测年物质,同时也是测量中受困扰最多的物质之一(Libby,1955;Hedges and Van Klinken,1992)。骨头在考古地层中出现较多,往往是考古学家青睐的测年物质(Katzenberg and Harrison,1997)。14C-AMS技术是目前应用广泛且精度高的测年手段,使得很多样品量少、年代老及污染严重的骨头样品的测年成为可能,但由于骨头自身的特性,它埋葬环境及骨头保存状态的好坏直接影响测年结果的准确度,于是选用何种测年物质和分离技术及样品状况之间的权衡甚为重要,本文通过总结前人关于骨头14C-AMS可靠测年的研究进展,对于它的分离纯化技术有了系统深入的了解,也希望能给其他的测年工作者提供指导性的帮助。

1 骨头的组成及性质

新鲜的骨骼由75%—80%的无机矿物质即羟基磷灰石(Ca10(PO4)6(OH)2)和20%左右的有机质组成,羟基磷灰石中主要包含磷酸钙、碳酸钙、氟化钙和氢氧化钙,有机质中85%—90%约为骨胶原蛋白,其余为非胶原蛋白(NCPs),主要是骨钙蛋白、骨粘连蛋白、糖蛋白和血蛋白等(Brock et al,2013)。羟基磷灰石中只占骨头总重的6%左右,牙釉质中就更少了(3.5%),在近十几年间,普遍认为骨化石的无机14C年龄是一种混合年龄,晚于化石的真实年龄,于是科学家们研究的焦点集中在了提取骨胶原组分的测年(Hedges and Van Klinken,1992;Mihara et al,2004;Brock et al,2010a;Minami et al,2013a),图1就能很好地体现出来(Zazzo and Saliège,2011)。骨头样品中的有机质组分,仍然被认为是最为合理的,也是最有可能经过一系列化学、物理分离提取之后成为可靠测年组分的物质。

地质学上认为保存较好的埋藏骨化石,是保存于干洞穴及永久冻土中的,这种环境下骨胶原成岩作用和腐殖酸污染通常会最小(Stafford et al,1988)。实际上,大多数的骨头由于其主要成分磷灰石具有疏松、多孔及巨大比表面的结构,在长期的埋葬过程中,易发生如摄入阳离子和周围的有机质、交换某些离子、分解和淋滤胶原、微生物的袭击、矿物质晶格的改变甚至被淋滤、浸入无机淀积物等变化(Hedges,2002),它们的生物特性和化学组成都发生了改变,所以大多数用来测年的骨头都是经过中度至深度的成岩作用,以及经常受到大量腐殖酸和其他一些外源有机物质的侵蚀污染,这就增加了骨头样品14C年龄测定的困难和数据的不可靠性,因此,评价骨头的有机质部分骨胶原的保存情况对14C测年数据的正确分析至关重要。

图1 自1959年以来Radiocarbon期刊上发表的关于骨头有机质(黑圆点)和骨头碳酸盐(空心圆)的14C测年数据量对比图Fig.1 Compilation of all the radiocarbon dates published in the journal Radiocarbon on bone organic matter (black circles) and bone carbonate (open circles) since 1959

2 骨胶原的评价常用指标

在埋葬的环境中,矿物质晶格可以保护骨胶原,一定程度上避免发生降解作用,然而,在骨头发生严重成岩变化时,骨胶原可能发生随意的交联,部分分子的腐殖化作用,外源腐殖酸污染的侵入及水解作用的发生使一些胶原蛋白损失严重,所有严重风化的骨头将失去骨胶原的主要部分(至少80%),因此,骨胶原的含量可以指示骨头成岩风化程度。通过一些生物化学的手段可以指示骨胶原的性质,用以判断骨头的保存程度,评价骨头的级别,有人称之为“指纹图(fi ngerprints)”,这对14C-AMS测年的正确性分析很重要。

现代骨头中含22%的骨胶原,但在埋藏过程中这个含量会逐步下降,下降速度跟埋藏的环境条件有关。在欧洲、温带-亚热带区域,骨胶原一般损失较慢,更多的为污染的骨头;在热带地区,损失较快,骨胶原含量较低,一般都为降解骨头。普遍认为原始骨胶原含量为5%—20%的都属于保存好的骨头,<5%的为保存差的骨头,< 0.5%的为“非胶原的”保存,不适用于分析(Van Klinken,1999)。提取完整骨胶原中C%为35%左右,对于保存差的骨头,这个值经常低于30%,而且显示低骨胶原含量和异常的C/N值。正常的N%含量一般为11%—16%,低骨胶原含量的骨头中N%和C%有着相似的变化。DeNiro(1985)指出C/N比值不在2.9—3.6这个区间的被认为有污染,一般大家都普遍使用这个指标来指示骨胶原的污染状况(Calabrisotto et al,2013),但是牛津大学14C实验室发现他们的C/N平均值为3.29 ± 0.27(n= 2146),于是采用3.1—3.5的区间来判别是否为可以接收的骨样品,认为更能灵敏地指示出污染的骨头(Van Klinken,1999)。高值(远大于4的)的被认为有很大程度的成岩作用,或者可能来源于样品预处理过程中引入的大量外源C。

判断骨胶原质量的指标通常为骨胶原含量,C、N含量及C/N值,其次也可通过一些化学手段如稳定C、N同位素值、红外光谱(D'Elia et al,2007;Maspero et al,2011)及离子束分析(Quarta et al,2006,2008,2013)等进一步分析和判断它的组成,补充评价骨头的污染状况。近几年也有一些新技术如微计算机断层扫描技术(micro-CT),它结合一系列技术手段(组织学、红外光谱、透射电子扫描镜TEM、LA-ICP-MS)从微尺度方法上建立骨头保存状况的重要性,此项技术被评价有潜力成为一个快捷非破坏性的研究骨头成岩作用的有用工具(Tripp et al,2010;Fernandes et al,2013)。

3 无机羟基磷灰石组分测年方法进展

羟基磷灰石在埋藏过程中易与环境中的外源C发生交换及重结晶,致使很难完全分离得到内源C,故认为不能作为用于埋藏骨头的14C测年物质(Passariello et al,2012),但对于严重风化没有足够骨胶原的骨样及几乎不含有骨胶原成分的牙釉质和火化焙烧过的骨头,只能采用无机羟基磷灰石-碳酸盐部分进行14C年代测定(Hedges et al,1995;Naysmith et al,2007;Cherkinsky and Chataigner,2010)。在Longin法问世之前,骨头在14C测量中都是使用全样进行分析,而往往得出较年轻的结果。20世纪60年代开始有人尝试用盐酸浸泡过滤掉次级碳酸盐——方解石,选用磷灰石晶体中的无机碳组分来测年,骨磷酸盐晶格中的碳酸盐比其他的更易发生化学交换,易于溶解的地下水碳酸盐或大气中的CO2发生交换,所以普遍认为得不到正确的年代。Haynes(1968)提出用醋酸选择性地除掉次生碳酸盐,得到了一个偏老的年代,之后,Haas and Banewicz(1980)提出利用step heating方法来释放磷灰石中的碳酸盐,认为热量和化学稳定性正相关,因此只需要低的热量就可以释放出CO2,表面的受污染产生的碳酸盐加酸会在较低的温度释放出CO2,而骨头样中没有污染的源生C则需要较高的温度可以释放。Surovell(2000)采用Haas and Banewic提出的step heating方法收集无机碳进行一系列测年,得出的年代较为接近正确年代,并认为这方面还是有许多工作可以做的,但是结合醋酸+NaClO/醋酸(5:1)连续酸洗的方法可得到较好的结果。

火化焙烧的骨头一般都是在较高的温度(>600°C)下进行的,此过程会损失所有的有机质,同时,磷灰石的晶体结构和大小也会发生变化,高温下重结晶形成了一种对剩余的原有构造碳酸盐(大约0.1wt%)的保护层,阻止了它与环境中的碳酸盐进行交换,目前针对这微量的构造碳酸盐的提取及分析有了一系列的研究(Lanting et al,2001;Hüls et al,2010;Snoeck et al,2014)。处理方法一般如下:加入1.5%次氯酸钠溶液去除有机C(48 h,20°C),再加入1 M醋酸去除游离态的碳酸盐(24 h,20°C),得到的残余物烘干并粉碎成粉末后,加过饱和磷酸反应收集CO2,再还原成石墨进行AMS测量(Lanting et al,2001;Olsen et al,2008,2013)。

4 有机骨胶原组分测年方法进展

骨胶原的提取开始于20世纪70年代,而且占据了很重要的地位,目前也被认为是最可靠的埋藏骨化石的14C测年物质。骨胶原不溶于冷水,但在热水中长时间蒸煮,可以水解为溶于水的明胶,并且可能转变为氨基酸等,骨胶原不和稀酸和稀碱反应,但可以被浓HCl分解,因此通常用稀酸在室温下提取骨胶原。使用明胶是因为腐殖酸在90℃、pH=3的水中不溶,这个条件正是用来提取明胶的(Longin,1971;Gurfi nkel,1987),很多事实证实腐殖酸是主要污染源,为了从骨胶原中除掉腐殖酸使用Longin法与明胶提取相结合的方法运用至今,目前仍然是骨头有机质提取的主流方案。很多考古遗址及人类文明的研究中,都采用骨胶原进行14C-AMS定年,也都获得了满意的年代框架(Yuan et al,1996;Rando et al,2008;Zhang et al,2006)。

有时,只选用骨胶原测年往往得到的结果有偏差,于是就需要进一步的分离提纯,常用的方法有:离子交换树脂、超滤、提取单个氨基酸、纳滤等。对于保存较好的骨化石,这些方法所得年龄与骨胶原的无明显差别,但对于骨胶原含量低的样品,有时需要提取总氨基酸或特定单个氨基酸测定,但这需要充足的样品量,也有采用非胶原蛋白,如骨钙蛋白、血液蛋白等进行研究,所得到的结果都不是很理想。

4.1 XAD-2离子交换柱法

XAD树脂是多孔性的,非极性甚至弱极性的吸附剂,适用于从水相溶液中分离出弱的非离子的脂肪族和芳香族化合物。XAD-1,XAD-2,XAD-4聚合吸附剂是一类大孔的、非离子的、疏水性的苯乙烯-二乙烯苯共聚物,它们的比表面积分别是100 m2·g-1,330 m2·g-1,750 m2·g-1,孔径分别是200 Å,90 Å,50 Å,非常适用于同位素分析中,因为这些树脂物理化学性质稳定,几乎不溶于酸碱及有机溶剂,可耐温度达250℃,常用于从环境和生化溶液中提取稀释化学物质或是从新鲜海水浓缩出腐殖酸,用液相色谱从水溶液中分离出弱极性化合物。

Stafford et al(1987,1988)首次提出使用XAD-2树脂进一步移除明胶溶液中的腐殖酸污染物,Minami and Nakamura(2000)、Minami et al(2004)用提取的明胶与XAD-2树脂过柱产物分别测年对比表明了对于保存状况不太好的骨头样品,特别是骨胶原含量小于1%的时候,提取明胶测年得到的年龄往往偏年轻,认为XAD-2树脂方法可以更有效地去除污染物,而对于保存状况很好的骨头,提取明胶测年就很充分了;Yuan et al(2000)列举了常用于14C测年的四种物质:骨胶原、水解骨胶原得到的明胶、进一步过XAD-2柱子纯化得到的氨基酸、进一步分离单个氨基酸,并进行了一些对比实验,也认为XAD - 2树脂方法是移除腐殖酸污染更有效的方法,与Minami的结论一致。但是有实验发现,经过明胶化、水解和离子交换分离得到的混合氨基酸经14C含量测定,被证明含有大约5 pMC污染,推测为通过离子交换柱时没有分离的氨基酸形成的氨基糖造成的,加之此方法操作过柱子较繁琐,因此使用此方法的实验室较少。

4.2 超滤方法

超滤是利用不对称微孔结构和半透膜介质,依靠膜两侧的压力差为驱动力,阻截溶液中各种大分子溶质、微粒、胶悬体,以达到分离纯化的目的。超滤(UF)同反渗透技术类似,是以压力为推动力的膜分离技术,属分子量水平的过滤,截留分子量范围为 500—500000 道尔顿(Da),超滤膜的孔径一般在 1—100 nm。利用超滤器能有效地去除水中的微粒、胶体、细菌、热源和有机物,适用于以分离、浓缩、净化为目的的各种生产工艺中,此方法使用过程简单,不需加热,效率高。

Brown et al(1988)首次提出使用超滤技术进一步纯化骨胶原,以获得大分子量的蛋白质混合物(一般取>30 kDa),牛津大学ORAU实验室在2000年确定了采用ABA- GEL明胶化-超滤的流程为处理骨头样品的实验室方案(Bronk Ramsey et al,2000),之后很多实验室都认为超滤是可以移除这些潜在污染(短链降解的胶原和一些钛、氨基酸、富里酸和盐等)简单有效的好办法(Bronk Ramsey et al,2004;Higham et al,2006;Brock et al,2013),但是也有报道指出并不能完全移除< 30 kDa组分,且超滤膜自身会带来一些污染,即膜上的润湿剂丙三醇,它是用植物或动物中提取的,或是石油加工中的副产品,这些都或多或少的带入或年轻或年老的C污染(Bronk Ramsey et al,2004;Brock et al,2007;Hüls et al,2007,2009)。Bronk Ramsey et al(2004)提出了一些改进方案,重复清洗滤膜可减少污染,对于采用超滤法的实用性和正确性一直存在争议,但相比较而言,超滤法是近几年各14C实验室最常用的胶原提纯方法(Beaumont et al,2010;Talamo and Richards,2011;Fuller et al,2015)。

4.3 提取氨基酸测年方法

样品愈老外来的成分愈多,外来碳的相对比重也就愈高,年龄测量的误差也愈大。虽然骨胶原有较强的抗蚀性,能部分保存,但是溶解于地下水中的游离氨基酸和各种腐殖酸可能被带进骨化石,通过骨胶原提取的总氨基酸测年往往是不够的,于是有人就提出使用液相色谱分离技术提取单个氨基酸进行14C-AMS测年更可靠一些。羟脯氨酸在骨胶原中占10%左右,在自然界中大多数的其他动物蛋白质中比较罕见,同时它在亚硝酸体系中不会发生脱氨基作用形成羟基羧酸,而是形成亚硝基化合物,较易与其他氨基酸分离纯化,因此被认为是骨头特有的生物标记物(Van Klinken and Mook,1990;McCullagh et al,2010)。1981年,Gillespie和他的同事首次从化石骨骼中分离出羟脯氨酸并用于14C-AMS测定年代结果表明,该方法提供的年代与当时传统的批量胶原蛋白的年代一样精确(Gillespie et al,1984)。1990年,陈铁梅选用了骨质样品中不同有机碳组分进行对比测年,结果表现为同一样品中以羟脯氨酸年龄最老,纯氨基酸年龄居中,而骨胶原年龄则普遍稍晚,污染还反映在个别样品的腐殖酸年龄明显偏低(陈铁梅,1990)。Marom et al(2012,2013)和McCullagh et al(2010)分别肯定了采用高效液相色谱法HPLC提取单个氨基酸方法进行测定的可能性,认为特别对于一些接近测年上限的(>40 ka)、年代一直有争议的老骨头样品,分离骨胶原中羟脯氨酸进行测定可以得出准确可靠的14C年龄,但此技术的使用过程很费时、费力。

4.4 其他方法

纳滤技术是介于超滤与反渗透之间的一种膜分离技术,其截留分子量在80—1000道尔顿,孔径为几纳米,因此称纳滤。Boudin et al(2013,2014)介绍了一个用陶瓷过滤器的纳滤方法进一步纯化骨胶原的研究,这意味着避免了类似超滤方法中过滤膜代入的外源碳污染。超滤是去除骨胶原低分子量污染的一种有效的方法,但是它没有移除骨胶原蛋白中高分子量的污染物,如腐殖质-胶原蛋白交联复合物,相比于用HPLC分离单个氨基酸的方法,纳滤是更简单和易操作一些。Boudin研究选择截留分子量为450道尔顿的纳滤膜,收集的所需氨基酸则在渗透液中(氨基酸的截留分子量在75.07 —204.23道尔顿变化),而污染物腐殖物质(HSs)则在保留相中,因为腐殖质的分子量一般在1000—300000道尔顿,此方法目前处于探索阶段,在骨头的前处理方案中应用也比较少。还有研究报道了将超滤和XAD-2方法结合使用对一些有问题的骨头样品年代进行再次的探讨,得到了满意的结果(Gillespie et al,2015)。

逐步燃烧法作为一个有效的分离年轻污染物手段,已成功运用于木炭和沉积物可靠14C测年物质的获取中(Santos et al,2001;McGeehin et al,2004;程鹏等,2012),如果将逐步燃烧法应用到骨样品的可靠14C测年组分的提取研究中,将会是一个最经济最方便有效的一个替代前处理方案。针对这一想法,先选择了几个不同保存类型的考古骨头样品进行了逐步燃烧法的初探,主要是对提取的骨胶原组分进一步通过高低温(800℃和400℃)来分离年轻不稳定的组分来达到纯化的目的,收集不同温度组分进行14C-AMS测年,并与骨胶原的年代结果进行比较,数据见表1。通过骨胶原的一系列指标分析,再加上外观的初步判断,认为2#样品为保存较好的骨头样本,5#样品为相对保存较差的骨头样本,不同组分的14C年代数据对比显示:对于保存状况好的骨样,骨胶原在400℃、800℃组分的14C年龄和骨胶原14C年龄在误差范围内较为一致,逐步燃烧并没有分离出年轻的污染物,进一步佐证了骨胶原的14C年龄就代表了此类骨头的真实年龄值,而对于相对保存较差的骨样,800℃得到的高温组分比骨胶原的年龄偏老,低温组分偏年轻,可见逐步燃烧方法高温组分获得的年代更可靠一些,表明了此方法纯化骨胶原移除腐殖酸污染效果很明显,这为骨质样品可靠14C测年物质的获得提供了一条新的途径。

表1 2个骨样的骨胶原评价及不同组分的14C-AMS测年数据Tab.1 Results of14C-AMS dating of different collagen fractions and evaluation of collagen for 2 fossil bone samples

5 总结与展望

目前,这些前处理方法各实验室都在使用,根据骨头的不同保存状态不同类型选择不同的研究方案。对于保存较好骨样品,通常认为骨胶原水解得到的明胶即为可靠的14C测年物质,但是对于保存一般甚至不太好的骨头,通常是需要更多的分离技术来提纯骨胶原,如XAD树脂,超滤及液相色谱分离单个氨基酸等,对于火化处理过的骨头和牙釉质,则需提取羟基磷灰石中的碳酸盐部分进行测年研究。对于上述常用的骨胶原纯化方法,都或多或少的存在一些缺陷和问题,这时就需要一些新方法新技术的出现。采用逐步燃烧法的尝试给未来工作提供了方向,还需进一步对此方法在骨头前处理中的应用做深入研究,并与以上的国际热门方法进行对比实验,探讨出一个方便可行、高效快捷的测年提取方案。

程 鹏, 吴书刚, 杜 花, 等. 2012. 逐级温度热解法在黄土古土壤样品14C测年中的应用[J].干旱区资源与环境, 26(12): 81 – 85. [Cheng P, Wu S G, Du H, et al. 2012. The application of temperature-step-pyrolyzing to14C dating of loess paleosoil sample [J].Journal of arid land resource and environment, 26(12): 81 – 85.]

陈铁梅. 1990. 第四纪骨化石样品的多方法对比测年[J].第四纪研究, 9(3): 282 – 290. [Chen T M. 1990. Comparative study of Quaternary fossil bone dating [J].Quaternary Sciences, 9(3): 282 – 290.

Beaumont W, Beverly R, Southon J, et al. 2010. Bone preparation at the KCCAMS laboratory [J].Nuclear Instruments and Methods in Physics Research B, 268: 906 – 909.

Boudin M, Boeckx P, Buekenhoudt A, et al. 2013. Development of a nanofiltration method for bone collagen14C AMS dating [J].Nuclear Instruments and Methods in Physics Research B, 294: 233 – 239.

Boudin M, Boeckx P, Vandenabeele P, et al. 2014. An archaeological mystery revealed by radiocarbon dating of cross-flow nanofiltrated amino acids derived from bone collagen, silk, and hair: case study of the bishops Baldwin Ⅰand Radbot Ⅱ from Noyon-Tournai [J].Radiocarbon, 56(2): 603 – 617.

Brock F, Geoghegan V, Thomas B, et al. 2013. Analysis of bone“collagen” extraction products for radiocarbon dating [J].Radiocarbon, 55(2/3): 445 – 463.

Brock F, Higham T, Ditchfield P, et al. 2010a. Current pretreatment methods for AMS radiocarbon dating at the Oxford radiocarbon accelerator unit (ORAU) [J].Radiocarbon, 52(1): 103 – 112.

Brock F, Higham T, Ramsey C B, et al. 2010b. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones [J].Journal of Archaeological Science, 37: 855 – 865.

Brock F, Ramsey C B, Higham T F G. 2007. Quality assurance of ultrafiltered bone dating [J].Radiocarbon, 49(2): 187 – 92.

Bronk Ramsey C, Higham T F G, Bowles A, et al. 2004. Improvements to the pretreatment of bone at Oxford [J].Radiocarbon, 46(1): 155 – 163.

Bronk Ramsey C, Pettitt P B, Hedges R E M, et al. 2000. Radiocarbon dates from the Oxford AMS system: Archaeometry Datelist 30 [J].Archaeometry, 42: 459 – 479. Brown T A, Nelson D E, Vogel J S, et al. 1988. Improved collagen extraction by modified Longin method [J].Radiocarbon, 30(2): 171 – 177.

Calabrisotto C S, Fedi M E, Caforio L, et al. 2013. Collagen quality indicators for radiocarbon dating of bones: new data on bronze age Cyprus [J].Radiocarbon, 55(2/3): 472 – 480.

Cherkinsky A, Chataigner C. 2010.14C ages of bone fractions from Armenian prehistoric sites [J].Radiocarbon, 52(2/3): 569 – 577.

DeNiro M J. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction [J].Nature, 317: 806 – 809.

D'Elia M, Gabriella G, Gianluca Q, et al. 2007. Evaluation of possible contamination sources in the14C analysis of bone samples by FTIR spectroscopy [J].Radiocarbon, 49(2): 201 – 210.

Fernandes R, Hüls M, Nadeau M J, et al. 2013. Assessing screening criteria for the radiocarbon dating of bone mineral [J].Nuclear Instruments and Methods in Physics Research B, 294: 226 – 232.

Fuller B T, Harris J M, Farrell A B, et al. 2015. Sample preparation for radiocarbon dating and isotopic analysis of bone from Rancho La Brea [J].Natural History Museumof Los Angeles County Science Series, 42: 151 – 167.

Gillespie R, Hedges R E M, Wand J O. 1984. Radiocarbon dating of bone by accelerator mass spectrometry [J].Journal of Archaeological Science, 11(2): 165 – 170.

Gillespie R, Wood R, Fallon S, et al. 2015. New14C dates for Spring Creek and Mowbray Swamp megafauna: XAD-2 processing [J].Archaeology in Oceania, 50(1): 43 – 48.

Gurfinkel D M. 1987. Comparative study of the radiocarbon of different bone collagen preparations [J].Radiocarbon, 9(1): 45 – 52.

Haas H, Banewicz J. 1980. Radiocarbon dating of bone apatite using thermal release of CO2[J].Radiocarbon, 22(2): 537 – 544.

Haynes Jr C V. 1968. Radiocarbon, analysis of inorganic carbon of fossil bone and enamel [J].Science, 161: 687 – 688.

Hedges R E M. 2002. Bone diagenesis: an overview of processes [J].Archaeometry, 44(3): 319 – 328.

Hedges R E M, Van Klinken G J. 1992. A review of current approaches in the pretreatment of bone for radiocarbon dating by AMS [J].Radiocarbon, 34(3): 279 – 291.

Hedges R E M, Lee-Thorp J A, Tuross N C. 1995. Is tooth enamel carbonate a suitable material for radiocarbon dating? [J].Radiocarbon, 37(2): 285 – 290.

Higham T F G, Jacobi R M, Ramsey C B. 2006. AMS Radiocarbon dating of ancient bone using Ultrafi ltration [J].Radiocarbon, 48(2): 179 – 195.

Hüls C M, Erlenkeuser H, Nadeau M J. 2010. Experimental study on the origin of cremated bone apatite carbon [J].Radiocarbon, 52(2/3): 587 – 599.

Hüls C M, Grootes P M, Nadeau M J. 2007. How clean is ultrafi ltration cleaning of bone collagen? [J].Radiocarbon, 49(2): 193 – 200.

Hüls C M, Grootes P M, Nadeau M J. 2009. Ultrafiltration: Boon or Bane? [J].Radiocarborn, 51(2): 613 – 625.

Katzenberg M A, Harrison R G. 1997. What's in a bone? Recent advances in Archaeological bone chemistry [J].Journal of Archaeological Research, 5(3): 265 – 293.

Lanting J N, Aerts-BijmaA T, Plicht J V. 2001. Dating of creamated bones [J].Radiocarbon, 43(2A): 249 – 254.

Libby W F. 1955. Radiocarbon dating (2nd edition) [M]. Chicago: University of Chicago Press.

Longin R. 1971. New method of collagen extraction for radiocarbon dating [J].Nature, 230: 241 – 242.

Marom A, McCullagh J S O, Higham T F G, et al. 2012. Single amino acid radiocarbon dating of Upper Paleolithic modern humans [J].Proceedings of the National Academy of Sciences of the USA, 109(18): 6878 – 6881.

Marom A, McCullagh J S O, Higham T F G, et al. 2013. Hydroxyproline dating: experiments on the14C analysis of contaminated and low-collagen bones [J].Radiocarbon, 55(2/3): 698 – 708.

Maspero F, Sala S, Fedi M E, et al. 2011. A new procedure for extraction of collagen from modern and archaeological bones for14C dating [J].Analytical and Bioanalytical Chemistry, 401: 2019 – 2023.

McCullagh J S O, Marom A, Hedges R E M. 2010. Radiocarbon dating of individual amino acids from archaeological bone collagen [J].Radiocarbon, 52(2/3): 620 – 634.

McGeehin J, Burr G S, Hodgins G. 2004. Stepped-combustion14C dating of bomb carbon in lake sediment [J].Radiocarbon, 46(2): 893 – 900.

Mihara S, Miyamoto K, Nakamura T, et al. 2004.14C age determination for human bones during the Yayoi period—the calibration ambiguity around 2400 BP and the marine reservoir effect [J].Nuclear Instruments and Methods in Physics Research B, 223/224: 700 – 704.

Minami M, Muto H, Nakamura T. 2004. Chemical techniques to extract organic fractions from fossil bones for accurate14C dating [J].Nuclear Instruments and Methods in Physics ResearchB, 223/224: 302 – 307.

Minami M, Nakamura T. 2000. AMS radiocarbon age for fossil bone by XAD-2 chromatography method [J].Nuclear Instruments and Methods in Physics Research B, 172: 462 – 468.

Minami M, Sakata K, Takigami M, et al. 2013b. Ultrafi ltration pretreatment for14C dating of fossil bones from archaeological sites in Japan [J].Radiocarbon, 55(2/3): 481 – 490.

Minami M, Yamazaki K, Omori T, et al. 2013a. Radiocarbon dating of VIRI bone samples using ultrafiltration [J].Nuclear Instruments and Methods in Physics Research B, 294: 240 – 245.

Naysmith P, ScottE M, Cook G T, et al. 2007. A Cremated bone intercomparison study [J].Radiocarbon, 49(2): 403 – 408.

Olsen J, Heinemeier J, Bennike P, et al. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone [J].Journal of Archaeological Science, 35: 791 – 800.

Olsen J, Heinemeier J, Hornstrup K M, et al. 2013. ‘Old wood' effect in radiocarbon dating of prehistoric cremated bones? [J].Journal of Archaeological Science, 40: 30 – 34.

Passariello I, Simone P, Tandoh J, et al. 2012. Characterization of different chemical procedures for14C dating of buried, creamted, and modern bone samples at CIRCE [J].Radiocarbon, 54(3/4): 867– 877.

Quarta G, Butalag K, Calcagnile L, et al. 2008. IBA analyses and lead concentration measurements of AMS-14Cdated bones from two medieval sites in Italy [J].Nuclear Instruments and Methods in Physics Research B, 266: 2343 – 2347.

Quarta G, Calcagnile L, D'elia M, et al. 2013. A combined PIXE-PIGE approach for the assessment of the diagenetic state of cremated bones submitted to AMS radiocarbon dating [J].Nuclear Instruments and Methods in Physics Research B, 294: 221 – 225.

Quarta G, D'Elia M, Butalagl K, et al. 2006. An integrated accelerator mass spectrometry radiocarbon dating and ion beam analysis approach for the study of archaeological contexts [J].Applied Physics A: Materials Science & Processing, 83: 605 – 609.

Rando J C, Alcover J A, Navarro J F. 2008. Chronology and causes of the extinction of the Lava Mouse, Malpaisomys insularis (Rodentia: Muridae) from the Canary Islands [J].Quaternary Research, 70(2): 141 – 148.

Santos G M, Bird M I, Pillans B, et al. 2001. Radiocarbon dating of wood using different pretreatment procedures: application to the chronology of Rotoehu Ash, New Zealand [J].Radiocarbon, 43(2A): 239 – 248.

Snoeck C, Brock F, Schulting R J. 2014. Carbon exchanges between bone apatite and fuels during cremation: impact on radiocarbon dates [J].Radiocarbon, 56(2): 591 – 602.

Stafford T W, Jull A J T, Brendel K, et al. 1987. Study of bone radiocarbon dating accuracy at the university of Arizona NSF accelerator facility for radioisotope analysis [J].Radiocarbon, 29(1): 24 – 44.

Stafford T W, Brendel K, Duhamel R C. 1988. Radiocarbon,13C and15N analysis of fossil bone: Removal of humates with XAD-2 resin [J].Geochimica et Cosmochimica Acta, 52: 2257 – 2267.

Surovell T A. 2000. Radiocarbon dating of bone apatite by step heating [J].Geoarchaeology, 15: 591 – 608.

Talamo S, Richards M. 2011. A comparison of bone pretreatment methods for AMS dating of sample >30,000 BP [J].Radiocarbon, 53(3): 443 – 449.

Tripp J A, Squire M E, Hamilton J, et al. 2010. A nondestructive prescreening method for bone collagen content using micro-computed tomography [J].Radiocarbon, 52(2/3): 612 – 619.

Van Klinken G J, Mook W G. 1990. Preprative high-performance liquid chromatographic separation of individual amino acids derived from fossil bone collagen [J].Radiocarbon, 32(2): 155 – 164.

Van Klinken G J. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements [J].Journal of Archaeological Science, 26(6): 687 – 695.

Yuan S X, Wu X H, Gao S J, et al. 2000. Comparison of different bone pretreatment methods for AMS14C dating [J].Nuclear Instruments and Methods in Physics Research B, 172: 424 – 427.

Yuan S X, Guo Z Y, Wang J J. 1996. AMS14C dating of ancient human bones in missing layers [J].Nuclear Instruments and Methods in Physics Research Section B, 113: 477 – 478.

Zazzo A, Saliège J F. 2011. Radiocarbon dating of biological apatites: A review [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 310: 52 – 61.

Zhang H C, Li B, Yang M S, et al. 2006. Dating paleosol and animal remains in loess deposits [J].Radiocarbon, 48(1): 109 – 116.

Recent advances of the pretreatment approaches for14C-AMS dating in bone

DU Hua1,2, XIONG Xiaohu1,2, FU Yunchong1,2, NIU Zhenchuan1,2, LU Xuefeng1,2
(1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an Accelerator Mass Spectrometry Center, Xi'an 710061, China)

Background, aim, and scopeBone is one of widely used dating materials in the field of archaeology and geochronology, it represents a significant repository of archaeological information and, within an archaeological context, bones acquire increasing importance especially when they are the only available material at a given site. Bone's chemical treatments for radiocarbon dating has drawn the attention of many laboratories because dates of bones and charcoals found in the same layer often disagree. Human and animal bones contain carbon in both organic and inorganic form, with collagen being the commonly analyzed fraction for radiocarbon dating of the buried bones, but isolation of bone collagen for14C dating is a labor-intensive and time-consuming process that sometimes results in unacceptably low protein recovery, so it is still a hot spot and diffi cult problem for scientists to remove contamination by effective purifi cation plan and produce accurate14C-AMS dating ages. The content and the quality of collagen can vary signifi cantly, mainly depending on bone preservation, so how to choosethe dating materials or purifi cation methods is important for bone depending on the sample status.Materials and methodsIn this article we briefly reviewed the recent advances of the pretreatment approaches for14C-AMS dating of bone, separately introduced the chemical composition and natures of fossil bone during the buried process, the evaluation and analysis technology of collagen and various kinds of pretreatment methods. Moreover, for 2 archaeological bone samples we have analysed the quality of collagen indicators, adopted the stepped-combustion method to extract the different components of collagens, prepared them into graphites respectively for dating using AMS.ResultsWe simply described the quality of the collagen indicators, it included that the collagen content, the content of C, N and C/N value, the stable C and N isotope analysis, the infrared spectrum and the ion beam analysis etc, we can evaluate the preserved status of fossil bone by these information analysis, it's important to properly analyse and explain if the14C dating results we got are resonable. Meanwhile, we analyzed the current development status of inorganic hydroxyapatite fraction dating and the new techniques in purifi cation of collagen, we mainly focused on intrducing the extracted and the purified methods of bone collagen, including the XAD-2 ion-exchange resin dating, the ultrafi ltration dating, the nanofi ltration dating and the single amino acid dating. In the end we refered our preliminary study of bone collagen14C dating using the stepped-combustion method. As an effective method of separating young contaminants, the stepped-combustion method is successfully used in the sediment and charcoal application of extracted reliable14C dating materials, so we wanted to apply the stepped-combustion method to extract reliable components for14C-AMS dating of 2 bone samples.DiscussionFor well-preserved bone samples, generally the gelatin obtained from hydrolyzing collagen to isolate young contaminants is as a reliable14C dating material, its ages are no obvious differences in compared with the other ages derived from more purifi ed procedures, for poorly-preserved bones and even extremely poorly-preserved samples, we need more experiment procedures to purify the bone collagen, such as XAD-2 resin, ultrafi ltration, nanofi ltration and liquid chromatographic separation of a single amino acid etc. Moreover, for the cremated bone and tooth enamel, we need extract the inorganic carbon of hydroxyapatite for radiocarbon dating. We analysed a series of evaluation indicators for collagen, coupled with the appearance of a preliminary judgment, agreed that one sample was the well-preserved bone samples, another was relative poorly-preserved bone samples, the14C dating results of different components show that for the well-preserved bone, the14C ages from high-temperature 800℃ components and the low-temperature 400℃ components is relatively consistent with the14C age of collagen within the error range. For the relative poorly-preserved bone samples, the14C age from high-temperature (800℃) component was older than collagen, the low-temperature component age was young, that it suggested that stepped-combustion method could isolate young pollutants, its high-temperature components could get a more reliable14C age, and it established a new path for the pretreatment of bone samples for14C dating.ConclusionsAlthough the ultrafi ltration is the popular collagen extraction method in many14C lab, but some reseachers found it could bring some contamination during the experiment process, so we need do more research and improvements about the pretreatment methods since these methods have some more or less defects and problems, we think it's necessary that some new methods and technology may be appeared for improving the development of bone14C dating research in such the situation.Recommendations and perspectivesWith so few data points, such conclusions are at best tentative, but we anticipate that with further work these trend will remain valid. In future we need to optimize of the step-combustion method conditions to ensure that samples, in particular poorly-preserved bone samples, are effective, and compare with the other purifi ed collagen methods like XAD-2 resin and ultrafi ltration. We hope this paper can provide helping for other reseachers in the fi eld of radiocarbon dating.

14C-AMS; bone; collagen; XAD-2 resin; ultrafi ltration; amino acid; bio-apatite

DU Hua, E-mail: duhua@ieecas.cn

10.7515/JEE201606002

2016-07-21;录用日期:2016-10-07

Received Date:2016-07-21;Accepted Date:2016-10-07

中国科学院科研装备研制项目(YZ201409)

Foundation Item:Instrument Developing Project of Chinese Academy of Sciences (YZ201409)

杜 花,E-mail: duhua@ieecas.cn

猜你喜欢
骨胶原磷灰石腐殖酸
腐殖酸水溶肥助力农业高质量发展
珊瑚羟基磷灰石表面改性的工艺
蚓粪腐殖酸对Cd2+的吸附作用研究*
羟基磷灰石在铀富集成矿中的作用
猪粪中添加腐殖酸添加剂可降低粪便中的臭气
万盈:中国第一家专注研发骨胶原的化妆品企业
含腐殖酸固废肥对菠菜产量及效益的影响
屈臣氏骨胶原滋养系列全新上市 薛凯琪与你分享美丽秘密
屈臣氏骨胶原滋养系列全新上市薛凯琪与你分享美丽秘密
薛凯琪代言全新上市 屈臣氏骨胶原滋养系列