我国季风区5 ka BP气候事件

2016-03-06 07:50:46谭亮成安芷生
地球环境学报 2016年5期
关键词:石笋高分辨率气候

李 东,谭亮成,安芷生

(1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;2.中国科学院大学,北京100049;3.西安交通大学 全球环境变化研究院,西安 710054)

我国季风区5 ka BP气候事件

李 东1,2,谭亮成1,3,安芷生1

(1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,西安 710061;2.中国科学院大学,北京100049;3.西安交通大学 全球环境变化研究院,西安 710054)

5.0 ka BP前后全球普遍经历了一次快速的降温事件,对世界范围内很多地区的环境产生了显著影响。本文利用公开发表的有高精度年代控制的、高分辨率石笋和湖沼沉积记录,系统回顾了5 ka BP气候事件在我国不同地区的降雨表现。这次气候事件在我国季风区不同区域都有记录,其中在季风区北方和青藏高原地区记录的最为清楚,体现为显著的干旱。事件起始于5.6 — 5.5 ka BP,在5.0 ka BP左右达到峰值,其后快速回升。5 ka BP气候事件对我国新石器文化的发展产生了重要影响。太阳辐射减少导致的赤道辐合带南移和大西洋经向翻转环流减弱导致的亚洲夏季风减弱可能驱动了此次气候事件。然而,不同地区、特别是南方地区的不同记录在此次事件的表现形式和开始时间有所差异。云南和湖北的泥炭记录显示此次事件为突变事件,发生于4.7 — 4.9 ka BP,不同于其他地质记录的渐变状态。未来还需加强在南方地区,特别是华东地区重建涵盖5 ka BP气候事件的有绝对定年的高分辨率可靠降雨记录。进一步厘清这些记录的差异是由于不同气候代用指标和记录分辨率的不同以及测年误差导致的,还是对气候事件的响应存在着区域差异。

5 ka BP事件;降雨表现;文化影响;中国季风区

全新世是地质时代的最新阶段,与人类的关系最为密切,全新世气候变化经历了早全新世升温—中全新世高温—晚全新世降温的过程,在以上变化背景下还存在若干次突变事件(李永化等,2003;谭亮成等,2008;王绍武,2009)。这些气候突变事件的发生背景和驱动机制不尽相同,引起古气候学界的广泛关注(Alley and Ágústsdóttir,2005;Yu et al,2010)。在5.0 ka BP前后全球普遍经历了一次快速降温事件(Xu et al,2006;吕厚远和张健平,2008;Moros et al,2009;Dirksen et al,2013;Marcott et al,2013;Prasad and Baier,2014;Castro et al,2015),与此同时北半球中低纬许多地区经历了一次干旱事件。由于这次气候事件发生于人类文明的前夕,因此意义重大。Magny and Haas(2004)通过南北半球植被、冰川、永久冻土等陆地和海洋的资料表明5 ka BP事件具有全球性,在南北半球中高纬度特别是北大西洋附近气候显著变冷。在欧洲南部,Castro et al(2015)通过对伊比利亚半岛西北部沼泽的植物大化石和泥炭腐殖化度分析发现,在5.3 —4.85 cal ka BP期间有一次变冷事件。此外,来自地中海中东部的石笋δ18O记录表明在5.2 ka BP和5.6 ka BP左右冬季降雨明显减少,代表两次明显的干旱事件,其中5.2 ka BP事件持续时间短于100年,而5.6 ka BP事件可以从5.7 ka BP延伸到5.4 ka BP(Zanchetta et al,2014)。对印度西部Pariyaj湖的研究发现在5.86—4.68 cal ka BP期间,孢粉和植物化石数量很低,指示了一次极端干旱事件(Raj et al,2015),对Sambhar湖的研究也发现了类似的干旱事件(Prasad and Enzel,2006)。Fleitmann et al(2003)重建了阿曼南部全新世石笋δ18O记录,发现5.3 ka BP左右石笋δ18O较高,指示印度季风减弱。阿拉伯海高分辨率沉积记录也有类似事件(Thamban et al,2007)。美国爱荷华州东北部石笋δ18O(Denniston et al,1999)也记录了该地区5.7—5.0 ka BP左右的干旱状态。5.5 ka BP左右,非洲地区也发现了显著的气候事件(deMenocal et al,2000),Thompson et al(2002)通过对乞力马扎罗6个冰芯的δ18O和粉尘含量研究,发现~5.2 ka BP左右有一次突然降温事件。

在我国季风区的许多记录中,也发现了5 ka BP气候事件的印记(Hong et al,2001;An et al,2012;Chen et al,2015;Xu et al,2015)。本文系统回顾我国季风区有绝对年龄控制的高分辨率石笋和湖沼等记录,重点关注近几年的最新成果,研究了5 ka BP气候事件时我国季风区的水文变化、对新石器文化的影响和可能的驱动机制,并进一步讨论了这一事件目前研究中存在的问题。

1 我国季风区5 ka BP气候事件的地质生物记录

本文将研究区分为东北地区、华北地区、华中地区、华东地区、华南地区、西南地区以及青藏高原地区。研究点见图1。

1.1 东北地区

吉林金川泥炭地以C3植被为主,纤维素的δ13C变化主要受控于降雨变化,降雨越少,δ13C越高。Hong et al(2001)发现金川泥炭纤维素的δ13C值在5.5 cal ka BP左右开始升高,揭示气候的变干,干旱在5.0 cal ka BP左右达到峰值(图2)。来自孢粉和碳屑颗粒的研究也显示,从5.5 cal ka BP开始,金川地区落叶林减少,针叶林增多,在5.0 — 4.6 cal ka BP期间孢粉浓度降低,干旱气候对5.12 ± 0.066 cal ka BP的火事件起到了促进作用(Jiang et al,2008)。与金川泥炭地相距不远的哈尼泥炭地的记录显示δ13C在5.8 cal ka BP开始升高,在4.8 cal ka BP左右达到峰值,同样指示环境比较干旱(Hong et al,2005)。临近的四海龙湾玛珥湖沉积物的生物硅净积累速率也反映出该地区在4.9 cal ka BP夏季降水量达到极小值(Schettler et al,2006)。黑龙江镜泊湖的研究表明在5.7 —5.43 cal ka BP,针叶林和落叶阔叶林数量处于低值,昭示气候寒冷干燥(Li et al,2011)。此外,Tan and Cai(2005)在辽宁本溪水洞石笋δ18O记录中也发现在4.8 ka BP左右δ18O偏正。

从以上研究可以看出,5 ka BP气候事件在东北地区表现较明显。泥炭记录有高精度的AMS14C测年结果,金川泥炭在4.84 cal ka BP(Hong et al,2001)、5.055— 5.186 cal ka BP(Jiang et al,2008)均有年龄控制点,而哈尼泥炭在5.383 cal ka BP也有年龄控制点。基于泥炭记录,我们认为这一事件在东北地区表现为明显的干旱,事件开始于5.5 ka BP左右,于5.0 ka BP左右达到峰值。

1.2 华北地区

位于北方季风边缘区的岱海是一个典型的内陆半咸水湖,同时受到亚洲夏季风、冬季风和西风的影响。Peng et al(2005)对岱海湖盆中心沉积物的粒度分布研究发现,在5.7 — 5.6 cal ka BP中值粒径低表明季风降水减少。Wang et al(2010b)结合了矿物磁性参数、粒度、TOC、C/N以及孢粉组合等指标分析了过去10000年以来内蒙古高原东南部安固里淖湖的气候变化,研究表明从~5.5 cal ka BP开始阔叶林孢粉百分比较低,松属类孢粉百分比增加,指示了气候的干冷。刘永慧等(2014)对河北围场御道口地区孢粉组合研究发现在5.356 — 4.684 cal ka BP期间阔叶乔木桦属(Betula L.)和湿生草本植物如莎草科(Cyperaceae)植物花粉含量相对减少,松属类花粉含量增加,但总体景观仍为疏林草原植被,揭示此时气候比较冷干。

Wang et al(2013)将岱海黑碳的δ13C值(δ13CBC)作为监测季风降雨的可靠指标,记录显示δ13CBC在5.7 cal ka BP左右开始升高,在5.0 cal ka BP左右达到最高,表明该时期岱海降水减少,气候显著干旱。Wang et al(2013)的年代是基于AMS14C测年, 在5.585—5.325 cal ka BP有一个年代控制点,这一最新的结果表明,在华北北部的季风边缘区,5.5 ka BP左右开始变干,也在5.0 ka BP达到干旱的顶峰。最近,Chen et al(2015)重建了山西公海14.7 ka以来东亚夏季风降雨记录,记录显示该地区年降水量(PANN)在5.5 cal ka BP左右开始下降,4.5 cal ka BP期间达到峰值。来自山西莲花洞的高分辨率石笋记录显示δ18O 从5.3 ka BP开始升高,在5.0 ka BP达到峰值,昭示了气候的变干(Dong et al,2015)。

图1 我国季风区5 ka BP气候事件研究地点(蓝色虚线部分为亚洲夏季风的北边缘带,A、B、C、D、E、F、G区域分别代表东北、华北、华中、华东、华南、西南和青藏高原地区。)Fig.1 Records of 5 ka BP event in monsoonal China (The blue dashline denotes the northern limit of Asian summer monsoon. A, B, C, D, E, F, G represent Northeast China, North China, Central China, East China, South China, Southwest China and the Tibetan Plateau, respectively.)

图2 中国季风区5 ka BP事件典型记录(灰色柱条表示降雨减少时期)Fig.2 Typical records of the 5 ka BP event from monsoonal China (The grey bars indicate intervals of reduction of monsoon precipitation)

由此可以看出,与东北地区相似,华北地区的5 ka BP气候事件也大约开始于5.5 ka BP,在5.0 ka BP左右达到峰值(图2)。

1.3 华中地区

5 ka BP事件在华中地区也有明显表现。藿烷类化合物是一种生物标志物,其浓度随着地下水位的降低而增大(Pancost et al,2003;Xie et al,2013)。来自湖北神农架的大九湖泥炭记录表明从4.9 cal ka BP开始,泥炭藿烷类化合物含量开始增高,在4.7 cal ka BP左右达到峰值,揭示此时华中地区的干旱气候(Xie et al,2013)。

谭亮成等(2014)通过对比陕南祥龙洞XL2石笋晚全新世δ18O和Sr/Ca比值记录,发现两条序列呈显著正相关关系,揭示渗流带水文变化这一共同因子对δ18O和Sr/Ca比值的影响;此外,来自祥龙洞的另外一支年纹层石笋XL21的δ18O与器测降雨记录对比也显示在过去98年中二者呈显著负相关关系(Tan et al,2015)。因此,祥龙洞石笋氧同位素记录在十到百年尺度上可反映季风降雨量的变化。祥龙洞另外一只石笋XL26记录显示δ18O值在5.0 ka BP明显偏正,指示季风降雨量的显著减少(图2,谭亮成未发表数据)。

1.4 华东地区

华东地区有可靠年代控制的中全新世气候记录较少。最近,来自福州盆地FZ4钻孔的孢粉分析表明在6.0 — 5.5 cal ka BP左右气候变冷,松属(Pinus Linn)、枫杨属(Pterocarya Kunth)、蕨类植物和草(禾木科,Gramineae)增多,这可能与夏季风的减弱有关,但是植被的变化也可能与当地人类活动的影响有关系(Yue et al,2015)。Innes et al(2014)对太湖平原中部研究发现在5.4 cal ka BP之后,一些耐寒植物像桦木属、水青冈属(Fagus L.)和赤杨皮属(Alnus)增加,而喜温植物像枫杨属和齿栗叶(Castanea)降低,表明了一次气候恶化事件。巢湖则大约在5.0 ka BP之后渐渐收缩,湖平面持续下降,气候变干,随后气温下降(Wu et al,2010)。

1.5 华南地区

华南地区的高分辨率记录主要来自湖光岩玛珥湖。Yancheva et al(2007)利用高分辨率磁性物质以及沉积物中钛的含量重建了湖光岩玛珥湖过去16 ka以来冬季风强度的变化情况。在5.4 cal ka BP左右,沉积物磁化率和钛含量的高值以及TOC的低值昭示了此时冬季风较强。通过对比湖光岩玛珥湖沉积记录与葫芦洞(Wang et al,2001)和董哥洞(Yuan et al,2004;Dykoski et al,2005)的石笋氧同位素发现两者呈反相关系,即强的冬季风对应弱的夏季风。湖泊沉积物中叶绿素a的浓度主要反映湖水的初级生产力,大量的降雨能增加湖水的营养供给,使湖泊的初级生产力加强,从而增加叶绿素a的浓度,因此叶绿素a的浓度是进行古气候重建的一个很好的指标(Wu et al,2012)。最近,Wu et al(2012)通过湖光岩玛珥湖沉积物叶绿素a、TOC、Sr/Rb、磁化率等高分辨率多重指标重建了全新世夏季风变化情况。数据显示叶绿素a浓度在6.0 ka BP左右开始降低,于5.5 — 5.0 ka BP达到最低值,揭示出此时夏季风强度较弱,气候比较干冷(图2)。

1.6 西南地区

西南地区的高分辨率气候记录主要来自石笋和湖泊。Wang et al(2005)对贵州董哥洞DA石笋δ18O记录研究发现,在5.5 ka BP左右亚洲季风减弱。来自董哥洞的另一支样品D4石笋记录显示δ18O从5.8 ka BP开始升高在5.2 ka BP达到峰值,显示在此期间夏季风强度减弱(Dykoski et al,2005)。然而,贵州的石笋氧同位素可能受到大范围环流效应的影响,反应夏季风强度的减弱,未必能反应局地降水的减少(Tan,2014)。

但是,云南西湖泥炭记录显示,在4.8 cal ka BP左右磁化率、密度、碳酸盐组分增高,TOC降低,表明由于印度夏季风强度减弱而导致当地降水减少(Xu et al,2015,图2)。同样来自云南的星云湖孢粉记录显示从5.5 cal ka BP开始,松林、落叶栎属(Quercus L.)和赤杨皮数量增加,常绿栎类数量降低,而喜温和喜湿的植被基本消失,揭示出气候逐渐变干的特征(Chen et al,2014)。另外,同受印度季风控制的阿曼南部的石笋记录显示δ18O从6.0 ka BP开始升高,在5.3 ka BP达到峰值,指示了季风降雨的减少(Fleitmann et al,2003)。

综上,5 ka BP气候事件在西南地区主要表现为冷干,时间大致发生于5.5 — 4.8 ka BP。但不同的记录在事件发生时间上存在一定差异,可能是由于不同指标的分辨率和年代误差导致的。

1.7 青藏高原地区

青藏高原的高分辨率全新世气候记录主要集中在高原中南部和东北边缘。仙女洞位于青海省河南蒙古族自治县,来自该洞的石笋记录表明在5.6 ka BP左右δ18O开始升高,并在5.0 ka BP左右达到最正值,昭示了当时该区存在一次气候变干事件。青海湖沉积物粒度、碳酸盐含量、TOC等指标综合表明,在5.3 ka BP左右亚洲夏季风明显减弱,青海湖地区显著干旱(An et al,2012)。最近,Lu et al(2015)进一步发现,5.5 ka BP左右青海湖周边风成活动增强,表明冷干的气候状态。另外,青藏高原东部红原泥炭的腐殖化度在5.6 cal ka BP左右开始降低,在5.4 cal ka BP左右达到极小值,显示气候由暖湿向干冷的转变(Wang et al,2010a)。Yu et al(2006)对红原泥炭腐殖化度的研究也得出了近似结论。

5 ka BP气候事件在高原中南部同样存在。天门洞的高分辨率石笋记录显示在5.6 ka BP石笋δ18O开始升高,在5.2 ka BP左右达到最高,揭示出印度夏季风的减弱(Cai et al,2012)。Bird et al(2014)通过青藏高原东南部Paru Co湖的粒度、岩屑通量等沉积学指标和叶蜡氢同位素比值,重建了11000年以来印度季风降水的变化情况。发现5.2 ka BP之后,研究区开始向干旱方向发展。对色林错沉积物矿物组合的分析和研究也表明在5.09 — 4.78 cal ka BP期间出现石膏沉积,湖泊强烈蒸发,湖水盐度较大,指示气候的冷干化(林勇杰等,2014)。临近的错鄂沉积物碳同位素值则在5.0 cal ka BP后波动下降,气候逐渐变干(吴艳宏等,2006)。

从这些记录可以看出,在青藏高原,受季风影响的中南部和东北边缘同样存在明显的5 ka BP气候变干事件。此次事件起始年代约为5.6 —5.5 ka BP,于5.2 — 5.0 ka BP达到峰值(图2)。

2 5 ka BP气候事件的影响及可能驱动机制

2.1 影响

研究表明,世界上许多古文化衰落的原因并不仅仅是由于文化本身造成的,气候变化也扮演了重要的角色(水涛,2001)。例如:4.2 ka BP的干旱事件很可能是印度河谷文明衰落的原因之一(Weiss and Bradley,2001;Staubwasser et al,2003;MacDonald,2011),同时此次干旱事件也导致了尼罗河水位的降低,最终可能导致了埃及古文明的衰落(Stanley et al,2003;Giosan et al,2012),而两河流域古文明的衰落也可能与此次事件有关(Weiss et al,1993;Cullen et al,2000)。Tan et al(2011)对比研究发现我国北方地区几乎所有改朝换代之际的战争高峰期都对应季风降雨的急剧减少时期。认为我国中北部这一历代中央王朝统治的核心区域的气候恶化通过影响中央王朝的人口、兵源、财赋收入、控制力等,进而对整个传统农业社会的发展有重要影响。

5 ka BP事件发生于人类文明的前夜,对新石器时代古文化的发展产生了重要影响。朱艳等(2001)认为5 ka BP气候事件导致我国各地新石器文化出现衰退或断层,如内蒙古中南部的老虎山文化与海生不浪文化和红山文化之间有200年的文化缺失,西辽河流域之前十分流行的“之”字纹陶器也在5.0 ka BP突然消失。李永化等(2003)也认为此次事件导致燕辽地区红山文化和小河沿文化之间出现了文化断层。而山西临汾盆地的西王村文化每百年的遗址点数量在4.9 ka BP之后由0.21骤降到0.034,这可能是由于5 ka BP气候事件导致的(Li et al,2014)。在5.5 —5.0 ka BP期间,长江三角洲太湖流域一带的遗址数量也处于低值,此次事件还造成了原始人类的生产方式和生活方式发生了变化(施少华,1993)。在关中地区,5.5 — 5.0 ka BP的干冷事件导致兴盛了2000多年的仰韶文化被龙山文化替代(吕厚远和张健平,2008)。伴随5 ka BP气候的冷干化,史前人类掀起了从高地向低地、从四周向中心迁徙的热潮(吴文祥和刘东生,2002)。然而,陈栋栋等(2011)认为5 ka BP气候事件并没有严重影响到山东地区海岱文明的传承,一些考古发现甚至显示此次事件促进了大汶口文化的发展。吴文祥和葛全胜(2005)也认为应该用辩证的眼光看待气候变化对古文化的影响:如果气候变化幅度在人类承受范围之内,气候变化对文明发展在某种程度上能起到促进作用,若气候变化幅度较大,超过了人类承受范围,则其对人类文明的发展可能更多的起到抑制作用。具体到各区域的古文化如何响应这次气候事件,还需要进一步研究。

2.2 驱动机制

许多因素可能导致5 ka BP事件的发生和传播,包括太阳活动的变化,赤道辐合带(ITCZ)位置的变化,大洋海水表面温度(SST)的变化,厄尔尼诺-南方涛动(ENSO),大西洋经向翻转环流(AMOC)的变化等。

Bond et al(2001)通过对全新世大气14C和10Be产率的研究认为5.2 ka BP左右太阳活动较弱;从Steinhilber et al(2009)通过冰芯10Be 重建的总太阳辐射度记录也可以看出,总太阳辐射度在5.6 ka BP左右显著下降,于5.2 ka BP达到最低值(图3)。Goosse et al(2002)通过模拟研究认为太阳活动的减弱有可能导致类似于5 ka BP气候异常。太阳辐射减少可能导致北大西洋浮冰增加,北大西洋经向翻转环流(AMOC)变慢(Oppo et al,2003),热带印度洋南部SST增加, 海陆热力差异减少,导致印度夏季风减弱(Hong et al,2003)。另外,亚洲季风也可能通过大气过程快速响应北大西洋地区气候变化,比如和尚洞高分辨率石笋地球化学指标记录的8.2 ka BP气候事件在时间上和格陵兰冰芯记录看不到区别(Liu et al,2013)。除了这种间接影响,Gupta et al(2005)认为,太阳辐射的微小变化可以直接导致热带季风的显著变化。Fleitmann et al(2007)也提出,中晚全新世过渡时期的太阳辐射减弱导致了ITCZ位置南移和印度夏季风的减弱,从而导致阿曼地区气候变干。

图3 北大西洋浮冰记录与太阳活动记录对比(灰色柱条表示太阳辐射减弱时期)Fig.3 Comparison between the drift ice records in the North Atlantic Ocean and solar activities (The grey bars indicate intervals of reduction of solar irradiance)

综上,太阳辐射的减少是5 ka BP气候事件的外部驱动力,辐射减少导致的赤道辐合带(ITCZ)南移和大西洋经向翻转环流(AMOC)减弱导致的亚洲夏季风减弱可能最终导致了我国季风区降水的普遍减少。

3 小结与展望

从以上综述的研究结果可以看出,5 ka BP气候事件在我国季风区不同区域都有体现。其中在季风区北方和青藏高原地区记录的最为清楚,体现为显著的干旱;事件起始于5.6 — 5.5 ka BP,在5.0 ka BP左右达到峰值,其后快速回升。华中地区的石笋记录也和北方地区的结果一致。在西南地区也有显著的冷干表现,已有记录显示这次事件在西南大致发生于5.5 — 4.8 ka BP。华南地区在5.5—5.0 ka BP期间也表现为显著的干旱气候。尽管在华东地区也能看到5 ka BP事件的印记,但由于已有记录分辨率和年龄控制的原因,难以确定其起止时间。此次气候事件对我国新石器文化的发展产生了重要的影响。太阳辐射减少导致的赤道辐合带(ITCZ)南移和大西洋经向翻转环流(AMOC)减弱导致的亚洲夏季风减弱可能驱动了此次气候事件。

不过对这次事件还需要进行深入研究。从我国季风区不同区域在5 ka BP气候事件时的高分辨率记录的对比可以看出,不同地区,特别是南方地区的不同记录在此次事件的表现形式和开始时间有所差异。比如在云南西湖和湖北大九湖泥炭记录显示此次事件为突变事件,时间发生于4.7 — 4.9 ka BP;而其余记录则显示为渐变状态,事件开始时间在5.6 — 5.5 ka BP,在5.0 ka BP左右达到峰值。这些差异到底是由于不同气候代用指标和记录分辨率的不同以及测年的误差导致的?还是对气候事件的响应存在着区域差异?需要进一步厘清。进一步在我国南方地区重建涵盖5 ka BP气候事件的有绝对定年的高分辨率可靠降雨记录是解决这一问题的基础。另外,此次气候事件对我国不同类型的新石器文化的影响也还需进一步探讨。

陈栋栋, 彭淑贞, 张 伟, 等. 2011.山东全新世典型气候事件的区域响应及其对海岱文明发展的影响[J].地理科学进展, 30(7): 846–852. [Chen D D, Peng S Z, Zhang W, et al. 2011. The response to Holocene climatic events of Shandong and their impacts on human activity [J].Progress in Geography, 30(7): 846–852.]

李永化, 尹怀宁, 张小咏, 等. 2003. 东北地区5000 a BP~ 4700 a BP左右的降温事件及对考古文化的影响[J].云南地理环境研究, 15(1): 12–18. [Li Y H, Yin H N, Zhang X Y, et al. 2003. Temperature drop at about 5000 a BP~4700 a BP in north-east of China and effect on archaeological culture [J].Yunnan Geographic Environment Research, 15(1): 12–18.]

林勇杰, 郑绵平, 王海雷. 2014.青藏高原中部色林错矿物组合特征对晚全新世气候的响应[J].科技导报, 32(35): 35–40. [Lin Y J, Zheng M P, Wang H L, et al. 2014. Late Holocene climatical and environmental evolutions inferred from mineralogical records in Selin Co, Central Qinghai-Tibetan Plateau [J].Science &Technology Review, 32(35): 35–40.]

刘永慧, 田 冶, 刘敖然, 等. 2014. 河北围场御道口地区中全新世以来古植被与古气候演变[J].南水北调与水利科技, 12(1): 69–72. [Liu Y H, Tian Y, Liu A R, et al. 2014. Variation of paleovegetation and paleoclimate since the Mid-Holocene in the Yudaokou Area of Weichang County, Hebei Province [J].South-to-North Water Transfers and Water Science&Technology, 12(1): 69–72.]

吕厚远, 张健平. 2008.关中地区的新石器古文化发展与古环境变化的关系[J].第四纪研究, 8(6): 1050–1060. [Lü H Y, Zhang J P. 2008. Neolithic cultural evolution and Holocene climate change in the Guanzhong Basin, Shaanxi, China [J].Quaternary Sciences, 28 (6): 1050–1060.]

水 涛. 2001.中国西北地区青铜时代考古论集[M].北京:科学出版社: 99–237. [Shui T. 2001. Paper on the bronze age archaeology of northwest China [M]. Beijing: Science Press, 99–237.]

谭亮成, 安芷生, 蔡演军, 等. 2008. 4.2 ka BP气候事件在中国的降雨表现及其全球联系[J].地质论评, 54(1): 94–104. [Tan L C, An Z S, Cai Y J, et al. 2008. The Hydrological exhibition of 4200 a BP event in China and its global linkages [J].Geological Review, 54(1): 94–104.]

谭亮成, 蔡演军, 安芷生, 等. 2014.石笋氧同位素和微量元素记录的陕南地区4200 ~ 2000 a BP高分辨率季风降雨变化[J].第四纪研究, 34(6): 1238–1245. [Tan L C, Cai Y J, An Z S, et al. 2014. High-resolution monsoon precipitation variations in southern Shaanxi, Central China during 4200~2000a B.P. as revealed by speleothemδ18O and Sr/Ca records[J].Quaternary Sciences, 34(6): 1238–1245.]

王绍武. 2009.全新世北大西洋冷事件: 年代学和气候影响[J].第四纪研究, 29(6): 1146–1153. [Wang S W. 2009. Holocene cold events in the North Atlantic: chronology and climatic impact [J].Quaternary Sciences, 29(6): 1146–1153.]

吴文祥, 刘东生. 2002. 5500 a BP气候事件在三大文明古国古文明和古文化演化中的作用[J].地学前缘, 9(1): 155-162. [Wu W X, Liu T S. 2002. 5500 a BP climatic event and its implications for the emergence of civilizations in Egypt and Mesopotamia and Neolithic cultural development in China [J].Earth Science Frontiers, 9(1): 155–162.]

吴文祥, 葛全胜. 2005. 全新世气候事件及其对古文化发展的影响[J].华夏考古, (3): 60–67. [Wu W X, Ge Q S. 2005. Climate events of the recent epoch and their influence upon the development of ancient culture [J].Huaxia Archaeology, (3): 60–67.]

吴艳宏, 王苏民, 侯新花. 2006.青藏高原中部错鄂全新世湖泊沉积物年代学研究[J].中国科学: 地球科学 (中文版), 36(8): 713–722. [Wu Y H, Wang S M, Hou X H.2006. Chronology of Holocene lacustrine sediments in Co Ngoin, Central Tibetan Plateau [J].Science in China, 36(8): 713–722.]

施少华. 1993.中国全新世高温期中的气候突变事件及其对人类的影响[J].海洋地质与第四纪地质, 13(4): 65–73. [Shi S H. 1993. Climatic abrupt change events and their impact on human civilization during Holocene megathermal in China [J].Marine Geology & Quaternary Geology, 13(4): 65–73.]

朱 艳, 陈发虎, 张家武, 等. 2001. 距今五千年左右环境恶化事件对中国新石器文化的影响及原因的初步探讨[J].地理科学进展, 20(2): 111–121. [Zhu Y, Chen F H, Zhang J W, et al. 2001. A discussion on the effects of deteriorated environment event on the Neolithic Culture of China, around 5 000 a BP [J].Progress in Geography, 20(2): 111–121.]

Alley R B, Ágústsdóttir A M. 2005. The 8 k event: cause and consequences of a major Holocene abrupt climate change [J].Quaternary Science Reviews, 24(10): 1123–1149.

An Z S, Colman S M, Zhou W J, et al. 2012. Interplay between the westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka [J].Scientific Reports, 2: 619, doi: 10.1038/srep00619.

Bond G, Kromer B, Beer J, et al. 2001. Persistent solar in fl uence on North Atlantic climate during the Holocene [J].Science, 294(5549): 2130–2136.

Bird B W, Polisar P J, Lei Y, et al. 2014. A Tibetan lake sediment record of Holocene Indian summer monsoon variability [J].Earth and Planetary Science Letters, 399: 92–102.

Cai Y J, Zhang H W, Cheng H, et al. 2012. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections [J].Earth and Planetary Science Letters, 335 / 336: 135–144.

Castro D, Souto M, Garcia-Rodeja E, et al. 2015. Climate change records between the mid-and late Holocene in a peat bog from Serra do Xistral (SW Europe) using plant macrofossils and peat humification analyses [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 420: 82–95.

Chen F, Chen X, Chen J, et al. 2014. Holocene vegetation history, precipitation changes and Indian summer monsoon evolution documented from sediments of Xingyun Lake, south-west China [J].Journal of Quaternary Science, 29(7): 661–674.

Chen F H, Xu Q H, Chen J H, et al. 2015. East Asian summer monsoon precipitation variability since the last deglaciation [J].Scienti fi c Reports, doi:10.1038/srep11186.

Cullen H M, Hemming S, Hemming G, et al. 2000. Climate change and the collapse of the Akkadian empire: evidence from the deep sea [J].Geology, 28(4): 379–382.

deMenocal P, Ortiz J, Guilderson T, et al. 2000. Abrupt onset and termination of the African humid period: Rapid climate responses to gradual insolation forcing [J].Quaternary Science Reviews, 19(1/2 / 3 /4 /5): 347–361.

Denniston R F, González L A, Asmerom Y, et al. 1999. Evidence for increased cool season moisture during the middle Holocene [J].Geology, 27(9): 815-818.

Dirksen V, Dirksen O, Diekmann B. 2013. Holocene vegetation dynamics and climate change in Kamchatka Peninsula, Russian Far East [J].Review of Palaeobotany & Palynology, 190(2): 48–65.

Dong J G, Shen C C, Kong X G, et al. 2015. Reconciliation of hydroclimate sequences from the Chinese Loess Plateau and low-latitude East Asian summer monsoon regions over the past 14,500 years [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 127–135.

Dykoski C A, Edwards R L, Cheng H, et al. 2005. 2A highresolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J].Earth and Planetary Science Letters, 33(1): 71–86.

Fleitmann D, Burns S J, Mangini A, et al. 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra) [J].Quaternary Science Reviews, 26(1): 170–188.

Fleitmann D, Burns S J, Mudelsee M, et al. 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman [J].Science, 300(5626): 1737–1739.

Giosan L, Clift P D, Macklin M G, et al. 2012. Fluvial landscapes of the Harappan civilization [J].Proceedings of the National Academy of Sciences, 109(26): E1688–E1694.

Goosse H, Renssen H, Selten F M, et al. 2002. Potential causes of abrupt climate events: A numerical study with a threedimensional climate model [J].Geophysical Research Letters, 29(18), doi: 10.1029/2002GL014993.

Gupta A K, Das M, Anderson D M. 2005. Solar in fl uence on the Indian summer monsoon during the Holocene [J].Geophysical Research Letters, 32, doi: 10.1029/2005GL022685.

Hong Y T, Hong B, Lin Q H, et al. 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene [J].Earth and Planetary ScienceLetters, 211(3): 371–380.

Hong Y T, Hong B, Lin Q H, et al. 2005. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Niño [J].Earth and Planetary Science Letters, 231(3): 337–346.

Hong Y T, Wang Z G, Jiang H B, et al. 2001. A 6000-year record of changes in drought and precipitation in northeastern China based on aδ13C time series from peat cellulose [J].Earth and Planetary Science Letters, 185(1): 111–119.

Innes J B, Zong Y, Wang Z, et al. 2014. Climatic and palaeoecological changes during the mid-to Late Holocene transition in eastern China: high-resolution pollen and nonpollen palynomorph analysis at Pingwang, Yangtze coastal lowlands [J].Quaternary Science Reviews, 99: 164–175.

Jiang W Y, Leroy S A G, Ogle N, et al. 2008. Natural and anthropogenic forest fi res recorded in the Holocene pollen record from a Jinchuan peat bog, northeastern China [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 261(1): 47–57.

Li C H, Wu Y H, Hou X H. 2011. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment [J].Quaternary International, 229(1): 67–73.

Li T Y, Mo D, Kidder T, et al. 2014. Holocene environmental change and its influence on the prehistoric culture evolution and the formation of the Taosi site in Linfen basin, Shanxi province, China [J].Quaternary International, 349: 402–408.

Liu Y H, Henderson G M, Hu C Y, et al. 2013. Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event [J].Nature Geoscience, 6(2): 117–120.

Lu R J, Jia F F, Gao S Y, et al. 2015. Holocene aeolian activity and climatic change in Qinghai Lake basin, northeastern Qinghai–Tibetan Plateau [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 430: 1–10.

MacDonald G. 2011. Potential in fl uence of the Paci fi c Ocean on the Indian summer monsoon and Harappan decline [J].Quaternary International, 229(1): 140–148.

Magny M, Haas J N. 2004. A major widespread climatic change around 5300 cal yr BP at the time of the Alpine Iceman [J].Journal of Quaternary Science, 19(5): 423–430.

Marcott S A, Shakun J D, Clark P U, et al. 2013. A reconstruction of regional and global temperature for the past 11,300 years [J].science, 339(6124): 1198–1201.

Moros M, De Deckker P, Jansen E, et al. 2009. Holocene climate variability in the Southern Ocean recorded in a deep-sea sediment core off South Australia [J].Quaternary Science Reviews, 28(19): 1932–1940.

Oppo D W, McManus J F, Cullen J L. 2003. Palaeooceanography: Deepwater variability in the Holocene epoch [J].Nature, 422(6929): 277–278.

Pancost R D, Baas M, van Geel B, et al. 2003. Response of an ombrotrophic bog to a regional climate event revealed by macrofossil, molecular and carbon isotopic data [J].The Holocene, 13(6): 921–932.

Peng Y J, Xiao J L, Nakamura T, et al. 2005. Holocene East Asian monsoonal precipitation pattern revealed by grainsize distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China [J].Earth and Planetary Science Letters, 233(3): 467–479.

Prasad S, Baier J. 2014. Tracking the impact of mid-to late Holocene climate change and anthropogenic activities on Lake Holzmaar using an updated Holocene chronology [J].Global and Planetary Change, 122: 251–264.

Prasad S, Enzel Y. 2006. Holocene paleoclimates of India [J].Quaternary Research, 66(3): 442–453.

Raj R, Chamyal L S, Prasad V, et al. 2015. Holocene climatic fluctuations in the Gujarat Alluvial Plains based on a multiproxy study of the Pariyaj Lake archive, western India [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 421: 60–74.

Schettler G, Liu Q, Mingram J, et al. 2006. East-Asian monsoon variability between 15 000 and 2000 cal yr BP recorded in varved sediments of Lake Sihailongwan (northeastern China, Long Gang volcanic field) [J].The Holocene, 16(8): 1043–1057.

Stanley J D, Krom M D, Cliff R A, et al. 2003. Short contribution: Nile flow failure at the end of the Old Kingdom, Egypt: strontium isotopic and petrologic evidence [J].Geoarchaeology, 18(3): 395–402.

Staubwasser M, Sirocko F, Grootes P M, et al. 2003. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability [J].Geophysical Research Letters, 30,doi:10.1029/2002GL016822.

Steinhilber F, Beer J, Fröhlich C. 2009. Total solar irradiance during the Holocene [J].Geophysical Research Letters, 36,doi:10.1029/2009GL040142.

Tan L, Cai Y, An Z, et al. 2011. Centennial- to decadal-scale monsoon precipitation variability in the semihumid region,northern China during the last 1860 years: records from stalagmites in Huangye Cave [J].The Holocene, 21: 287–296.

Tan L, Cai Y, Cheng H, et al. 2015. Climate significance of speleothemδ18O from central China on decadal timescale [J].Journal of Asian Earth Sciences, 106: 150–155.

Tan M. 2014. Circulation effect: Response of precipitationδ18O to the ENSO cycle in monsoon regions of China [J].Climate Dynamics, 42: 1067–1077.

Tan M, Cai B G. 2005. Preliminary calibration of stalagmite oxygen isotopes from eastern monsoon China with northern Hemisphere temperatures [J].Pages News, 13(2): 16–17.

Thamban M, Kawahata H, Rao V P. 2007. Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: timing and implications [J].Journal of Oceanography, 63(6): 1009–1020.

Thompson L G, Mosley-Thompson E, Davis M E, et al. 2002. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa [J].Science, 298(5593): 589–593.

Wang H, Hong Y T, Lin Q H, et al. 2010a. Response of humification degree to monsoon climate during the Holocene from the Hongyuan peat bog, eastern Tibetan Plateau [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 286(3): 171–177.

Wang H Y, Liu H Y, Zhu J L, et al. 2010b. Holocene environmental changes as recorded by mineral magnetism of sediments from Anguli-nuur Lake, southeastern Inner Mongolia Plateau, China [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 285(1): 30–49.

Wang X, Cui L L, Xiao J L, et al. 2013. Stable carbon isotope of black carbon in lake sediments as an indicator of terrestrial environmental changes: An evaluation on paleorecord from Daihai Lake, Inner Mongolia, China [J].Chemical Geology, 347: 123–134.

Wang Y J, Cheng H, Edwards R L, et al. 2001. A highresolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China [J].Science, 294(5550): 2345–2348.

Wang Y J, Cheng H, Edwards R L, et al. 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate [J].Science, 308(5723): 854–857.

Weiss H, Bradley R S. 2001. What drives societal collapse? [J].Science, 291(5504): 609–610.

Weiss H, Courty M A, Wetterstrom W, et al. 1993. The genesis and collapse of third millennium north Mesopotamian civilization [J].Science, 261(5124): 995–1004.

Wu L, Wang X Y, Zhou K S, et al. 2010. Transmutation of ancient settlements and environmental changes between 6000 — 2000 a BP in the Chaohu Lake Basin, East China [J].Journal of Geographical Sciences, 20(5): 687–700.

Wu X D, Zhang Z H, Xu X M, et al. 2012. Asian summer monsoonal variations during the Holocene revealed by Huguangyan maar lake sediment record [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 323: 13–21.

Xie S C, Evershed R P, Huang X Y, et al. 2013. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China [J].Geology, 41(8): 827–830.

Xu H, Hong Y T, Lin Q H, et al. 2006. Temperature responses to quasi-100-yr solar variability during the past 6000 years based onδ18O of peat cellulose in Hongyuan, eastern Qinghai–Tibet plateau, China [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 230(1): 155–164.

Xu H, Yeager K M, Lan J H, et al. 2015. Abrupt Holocene Indian summer monsoon failures: A primary response to solar activity? [J].Holocene, 25(4): 677–685.

Yancheva G, Nowaczyk N R, Mingram J, et al. 2007. In fl uence of the intertropical convergence zone on the East Asian monsoon [J].Nature, 445(7123): 74–77.

Yu S Y, Colman S M, Lowell T V, et al. 2010. Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago [J].Science, 328(5983): 1262–1266.

Yu X F, Zhou W J, Franzen L G, et al. 2006. High-resolution peat records for Holocene monsoon history in the eastern Tibetan Plateau [J].Science in China Series D, 49(6): 615–621.

Yuan D, Cheng H, Edwards R L, et al. 2004. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 304(5670): 575–578.

Yue Y F, Zheng Z, Rolett B V, et al. 2015. Holocene vegetation, environment and anthropogenic influence in the Fuzhou Basin, southeast China [J].Journal of Asian Earth Sciences, 99: 85–94.

Zanchetta G, Bar-Matthews M, Drysdale R N, et al. 2014. Coeval dry events in the central and eastern Mediterranean basin at 5.2 and 5.6 ka recorded in Corchia (Italy) and Soreq caves (Israel) speleothems [J].Global and Planetary Change, 122: 130–139.

5 ka BP event in monsoonal China

LI Dong1,2, TAN Liangcheng1,3, AN Zhisheng1
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an,710061, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710054, China)

Background, aim, and scopeA lot of studies suggested the Holocene climate change had played an important role in the evolution of the Neolithic cultures around the world. During the Holocene, there were a series of abrupt climate changes. One of the abrupt events occurred around ~5 ka BP, which signi fi cantly changed the environment of many regions over the world. Because this event occurred before the dawn of civilization, it had caused important in fl uences on human society. In this paper, we reviewed the recently published high-resolution, absolutely-dated speleothem and limnological records from different regions of monsoonal China, which had recorded hydrological changes during the5 ka BP event period. We further discussed its impacts on the Neolithic culture of China, as well as the driving mechanisms.Materials and methodsWe divided the monsoonal China into Northeast China, North China, Central China, East China, South China, Southwest China and the Tibetan Plateau. We compared the hydrological changes in different regions of monsoonal China, by using recent published high-resolution, absoluted dated records.ResultsWe suggested the monsoonal China, from the north to the south, had experienced dry climate during this event. The dry event was most signi fi cantly recorded in North China, Northeast China and Tibetan Plateau. It began at 5.6 — 5.5 ka BP, reaching to the driest at ~5.0 ka BP, and then the precipitation rapidly recovered. Stalagmite record from Central China also showed similar result with North China. There was also cold and dry climate in Southwest China during the period of 5.5 —4.8 ka BP. In South China, notably dry climate was observed in 5.5 — 5.0 ka BP. It seems there was imprint of 5 ka BP event in East China, although it’s hard to determine the exact timing, because of low resolutions and poor age controls of the published records. The extreme dry climate had played an important role on the evolution of Chinese Neolithic culture. The reduction of solar irradiance might cause the southward migration of ITCZ during the 5 ka BP event. Meanwhile, reduced AMOC during this event might weaken the Asian summer monsoon. The common effects of these two aspects might significantly reduce the monsoon precipitation in China.DiscussionDespite the similarities, some discrepancies were observed on the existed records in southern China. Peat records from Xihu in Southwest China and Dajiuhu in Central China show an abrupt and strongly dry event in 4.7— 4.9 ka BP. This is different from other geological records which show gradually decreasing precipitation from 5.6— 5.5 ka BP, with the driest time at 5.0 ka BP. Further studies are needed to clarify whether these discrepancies were caused by dating errors and resolutions of different proxies or different regional responses to the 5 ka BP event.ConclusionsThe monsoonal China had experienced notably dry climate during the 5 ka BP event. The extreme dry climate had played an important role on the evolution of Chinese Neolithic culture. The reduction of solar irradiance might cause the southward migration of ITCZ, and reduce the AMOC, weakening the Asian summer monsoon. Ultimately, those factors had caused the reduction of monsoon precipitation in China.Recommendations and perspectivesIt is crucial to build reliable precipitation records covering the 5 ka BP event period with high resolution and absolute dates in southern China. In addition, the impacts of this event on the evolution of Neolithic culture in different regions of monsoonal China need to be further discussed.

5 ka BP event; hydrological changes; culture impacts; monsoonal China

TAN Liangcheng, E-mail: tanlch@ieecas.cn

10.7515/JEE201605003

2016-04-29;录用日期:2016-07-01

Received Date:2016-04-29;Accepted Date:2016-07-01

科技部全球变化专项(2013CB955902);国家自然科学基金项目(41372192,41290254);中国科学院西部之光项目;陕西省青年科技新星项目(2015KJXX-57)

Foundation Item:National Basic Research Program of China (2013CB955902); National Natural Science Foundation of China (41372192, 41290254); the West Light Foundation of the Chinese Academy of Sciences; Young Scientist Project of Shaanxi Province (2015KJXX-57)

谭亮成,E-mail: tanlch@ieecas.cn

猜你喜欢
石笋高分辨率气候
高分辨率合成孔径雷达图像解译系统
雷达学报(2020年3期)2020-07-13 02:27:16
瞧,气候大不同
气候变暖会怎样?
石笋功
高分辨率对地观测系统
太空探索(2015年8期)2015-07-18 11:04:44
基于Curvelet-Wavelet变换高分辨率遥感图像降噪
游石笋山(外一首)
岷峨诗稿(2014年4期)2014-11-15 00:24:03
立冬
高分辨率遥感相机CCD器件精密热控制
客鸟尾石笋奇观