宁夏固原一中 柳伟博
数学解题后反思,让学生思维继续飞翔
宁夏固原一中 柳伟博
学生通过解题后的反思,不断地对问题进行观察分析、归纳类比、抽象概括,对所蕴含的数学方法、数学思想进行不断地思考并做出新的判断,体会解题带来的乐趣,享受探究带来的成就感。逐步养成学生独立思考、积极探究的习惯,并懂得如何学数学。
反思 分析 归纳 概括提高能力
由于学生认知结构水平的限制,表现出对知识不求甚解,热衷于做大量题,不善于解题后对题目进行反思,普遍欠缺一个提高解题能力的重要环节,也不善于纠正和找出自己的错误,缺乏解题后对解题方法、数学思维的概括,掌握知识的系统性较弱、结构性较差。一道数学题经过一番艰辛,苦思冥想解出答案后,必须认真进行如下探索:命题的意图是什么?考查的概念、知识和能力是什么?验证解题结论是否正确合理,命题所提供的条件的应用是否完备?求解论证过程是否判断有据,严密完善?本题有无其他解法——一题多解?多题一解?通过解题后反思,改进解题过程、探讨知识联系、知识整合、探究规律等一系列思维活动。
解题后反思的积极意义有如下几个方面。
解数学题,有时由于审题不明确,概念不清,忽视条件,套用相近知识,考虑不周或计算出错,难免产生这样或那样的错误,即学生解数学题,不能保证一次性正确和完善。所以解题后,必须对解题过程进行回顾和评价,对结论的正确性和合理性进行验证。可是一些同学把完成作业当成是赶任务,解完题目万事大吉。由此产生大量谬误,应该引起重视,加以克制,引以为戒。如1.结论荒唐,引为笑柄;2.以特殊代替一般;3.臆造“定理”,判断无据,以日常概念代替科学概念。以上常见的错误,不胜枚举。
数学知识有机联系纵横交错,解题思路灵活多变,解题方法途径繁多,但最终却能殊途同归。即使一次性解题合理正确,也未必能保证一次性解题就是最佳思路,最优最简捷的解法。不能解完题就此罢手,如释重负。应该进一步反思,探求一题多解,多题一解的问题,开拓思路,沟通知识,掌握规律,权衡解法优劣,再更高层次更富有创造性地去学习、摸索、总结,使自己的解题能力更胜一筹。如一题多解,每一种解法可能用到不同章节的知识,这样一来可以复习相关知识,掌握不同解法技巧,同时每一种解法又能解很多道题,然后比较众多解法中对这一道题哪一种最简捷,最合理?把本题的每一种解法和结论进一步推广,同时既可看到知识的内在联系、巧妙转化和灵活运用,又可梳理出推证恒等式的一般方法和思路:从左到右、从右到左、中间会师、转化条件等,善于总结,掌握规律,探求共性,再由共性指导我们去解决碰到的这类问题,便会迎刃而解,这对提高解题能力尤其重要。
在问题解决之后,要不断地反思:解题过程是否浪费了重要的信息,能否开辟新的解题通道?解题过程多走了哪些思维回路,思维、运算能否变得简捷?是否拘泥于思维定式,照搬了熟悉的解法?通过这样不断地质疑、不断改进,让解题过程更具有合理性、科学性、简捷性。
例:求证:正四面体和正八面体相邻两侧所成的二面角互补。此题有常规的解题思路:分别求出两个多面体的二面角的值,再求和。这也是一般参考书上的解法。探索解题过程,总感觉这样解题很笨拙,缺少灵气!不能反映两个多面体的巧妙结构。事实上,问题隐含了“结构”这个重要信息,那么,能否把“结构”作为切入点去探究问题呢?
解题之后,要不断地探究问题的知识结构和系统性。能否对问题蕴含的知识进行纵向深入的探究?能否加强知识的横向联系?把问题所蕴含的孤立的知识“点”,扩展到系统的知识“面”。通过不断的拓展、联系、加强对知识结构的理解,进而形成认知结构中知识的系统性。”
要让学生明白,问题与问题之间不是孤立的,许多表面上看似无关的问题却有着内在的联系,解题不能就题论题,要寻找问题与问题之间本质的联系,要质疑为什么有这样的问题?他和哪些问题有联系?能否受这个问题的启发。将一些重要的数学思想、数学方法进行有效的整合及创造性的设问,让学生在不断的知识联系和知识整合中,丰富认知结构中的内容,体验“创造”带来的乐趣,这对培养学生的创造思维是非常有利的。
对每个问题都要寻根问底,能否得到一般性的结果,有规律性的发现?能否形成独到的见解,有自己的小发明?点滴的发现,都能唤起学生的成就感,激发学生进一步探索问题的兴趣。长期的积累,更有利于促进学生认知结构的个性特征的形成,并增加知识的存储量。
总之,解题后引导学生不断地对问题进行观察分析、归纳类比、抽象概括,对问题中所蕴含的数学方法、数学思想进行不断的思考并做出新的判断,让学生体会解题带来的乐趣,享受探究带来的成就感。长此以往,逐步养成学生独立思考、积极探究的习惯,并懂得如何学数学,这是学好数学的必要条件。