苟芸,黄国伟,赵亚倩,陈爽,张绪梅
同型半胱氨酸对大鼠局灶性脑缺血后血管再生的影响
苟芸,黄国伟,赵亚倩,陈爽,张绪梅△
摘要:目的探讨同型半胱氨酸(Hcy)对大鼠局灶性脑缺血后梗死灶周围区血管再生的影响,为明确血管再生的抑制因素,促进大脑功能恢复奠定临床基础。方法将36只清洁级(SD)雄性大鼠随机分为3组:假手术组(SO组)、大脑中动脉闭塞(MCAO)模型组(MCAO组)、MCAO+Hcy组,每组12只,SO组和MCAO组腹腔注射生理盐水5mL/(kg·d),MCAO+Hcy组腹腔注射2%Hcy溶液5mL/(kg·d),预干预7 d后采用线栓法制作MCAO模型,于术后第7天处死取材,取材前3 d通过腹腔连续注射5-溴脱氧尿嘧啶核苷(BrdU)。通过高效液相色谱(HLPC)法检测大鼠血清中Hcy浓度,TTC染色观察脑组织梗死灶区面积大小,采用免疫荧光染色法检测梗死侧丘脑BrdU+/lamini+细胞数目。结果MCAO+Hcy组大鼠血清Hcy浓度较SO、MCAO组显著增高,脑组织梗死面积较MCAO组大,丘脑内BrdU+/laminin+细胞数目较MCAO组减少(P < 0.05)。结论体内Hcy浓度增高可增强脑梗死的损伤程度,并且抑制缺血区周围部位的血管再生。
关键词:脑梗死;疾病模型,动物;大鼠, Sprague-Dawley;同型半胱氨酸;血管再生
局灶性脑缺血可引起缺血区的神经病理性损伤,并导致缺血区周围继发性损伤,进而影响神经功能的恢复[1-2]。脑梗死发生后除了神经病理性改变外,在其预先存在的脑血管中可以长出新的毛细血管,此过程称为血管再生,主要包括血管内皮细胞增殖及细胞外基质的降解[3]。一直以来,国内外学者对脑梗死的研究主要集中于局部缺血组织,而近年来,有研究者发现缺血区周围组织的继发性损伤对脑梗死后大脑神经功能的恢复同样有重要影响,因而缺血区周围继发性损伤也日益受到重视[4-5]。研究表明,脑缺血可促进同侧丘脑神经再生和血管再生[6],故相应的促进血管再生或者消除抑制血管再生的因素有利于脑缺血患者的恢复。新近发现,血清同型半胱氨酸(homocysteine,Hcy)与脑梗死关系密切,可能是其新的独立危险因素[7]。目前Hcy对脑梗死损伤发生机制的研究鲜有报道。本研究主要讨论Hcy对局灶性脑缺血后血管再生的影响,为研究Hcy引起脑梗死的机制提供参考。
1.1动物分组与预干预成年健康雄性Sprague-Dawley大鼠购自北京维通利华实验动物技术有限公司[许可证号为SCXK(京):2014-0008],36只,体质量200~220 g。按照体质量分层,再用抽签法将大鼠随机分为假手术组(SO组)、大脑中动脉闭塞(MCAO)模型组(MCAO组)、MCAO+Hcy组,每组12只。SO组和MCAO组腹腔注射生理盐水5mL/(kg·d),MCAO+Hcy组腹腔注射2%hcy溶液5mL/(kg·d),预干预7 d。
1.2方法
1.2.1MCAO模型的建立采用改良Longa法[8],用10%水合氯醛,以3mL/(kg·d)剂量腹腔注射麻醉,将大鼠仰卧固定于手术台上,于颈部正中切口,分离左侧颈总、颈内和颈外动脉,结扎颈总、颈外动脉及其分支,在颈总动脉分叉处插入栓线深度约20mm,阻断大脑中动脉,随后以手术缝线固定栓线和颈内动脉。以手术后出现左侧Honer征(瞳孔缩小、上眼睑下垂、眼球内陷),右前肢瘫痪;麻醉清醒后,提尾悬空时右侧前肢内收、屈曲,自主运动时身体向右侧倾倒或转圈的大鼠为造模成功。
1.2.2腹腔注射5-溴脱氧尿嘧啶核昔(BrdU)为标记新增殖的细胞,各组大鼠按50mg/(kg·d)剂量于处死前3 d经腹腔注射BrdU(Sigma公司,美国),每日注射1次。
1.2.3高效液相色谱(high performance liquid chromatogra⁃phy,HPLC)法检测血浆Hcy浓度取120 μL血浆和标准Hcy溶液,分别加入50 μL 1.43mol/L NaBH4溶液和8 μL正戊醇混匀,于冰上静置30min;缓慢加入50 μL 0.6mol/L高氯酸,充分混匀,于室温下静置10min后13 000 r/min离心10min;取上清25 μL,依次加入5 μL 1.55mol/L NaOH溶液,63 μL 0.125mol/L硼酸盐缓冲液,25 μL 1 g/L SBD-F溶液,混匀后置于60℃避光振荡水浴60min,冰浴冷却后上样分析。色谱条件:柱温为室温,流动相为0.08mol/L乙酸-乙酸钠缓冲液(pH 4.0),流速1mL/min,洗脱时间40min,上样量20 μL。荧光检测激发波长390 nm,发射波长470 nm。
1.2.4TTC染色法计算梗死灶面积百分比各组大鼠取6只于MCAO术后第7天迅速断头取脑,脑组织置于-20℃冷冻30min后,从额极至枕极沿冠状切成5个层面,每个层面的厚度为约2mm,置于2% TTC溶液中,37℃避光孵育30min;再放入4%多聚甲醛中固定过夜,拍照。采用Image-Pro-Plus 6.0软件计算梗死灶体积(V)。V=t×(A1+A2+…+ An),t代表脑片厚度,A代表脑片梗死面积,梗死体积百分比=梗死体积/全脑体积×100%。
1.2.5脑组织石蜡切片制备取各组剩余6只大鼠,于MCAO术后第7天经10%水合氯醛麻醉,通过心脏灌注生理盐水120mL,再用4%多聚甲醛灌注100mL,然后取出梗死侧脑组织,于4%多聚甲醛中固定。梯度蔗糖脱水,常规石蜡包埋。将脑组织以梗死灶为中心冠状切开,隔4取1,切片厚度为6 μm。
1.2.6免疫荧光双标记检测丘脑血管再生石蜡切片脱蜡至水,PBS(pH 7.4)洗3次后用2mol/LhCl及0.1mol/L硼酸溶液(pH 8.5)预处理,经3%过氧化氢封闭内源性过氧化物酶和抗原修复后用山羊血清封闭1h,滴加一抗混合液[兔抗大鼠laminin(1∶100,Abcam公司,美国)和小鼠抗大鼠BrdU (1∶100,Sigma公司,美国)],4℃冰箱孵育过夜。PBS洗3次后滴加荧光二抗混合液(山羊抗兔FITC 1∶100,山羊抗小鼠TIRTC 1∶100),25℃避光孵育1h,用抗荧光衰减猝灭剂封片。阴性对照片不加一抗,采用PBS代替,其余步骤相同。荧光倒置显微镜(Olympus BX51,日本)拍片,图像结果采用Image-Pro-Plus6.0软件进行分析。
1.3统计学方法数据采用SPSS 19.0软件进行处理,计量资料以±s表示,采用单因素方差分析进行多组间比较,若组间差异有统计学意义,则采用SNK- q检验进行各组间多重比较。P < 0.05表示差异有统计学意义。
2.1各组Hcy浓度比较HPLC结果显示,与SO 组[(11.09±0.46)μmol/L]和MCAO组[(11.52±0.97)μmol/L]相比,MCAO+Hcy组[(17.38±0.47)μmol/L]大鼠血清Hcy浓度显著增高(n=6,F=162.212,P< 0.05),表明MCAO+Hcy组大鼠体内Hcy富集,并形成高同型半胱氨酸血症。
2.2Hcy对大鼠脑组织梗死灶的影响经TTC染色,SO组脑组织呈红色,基本没有梗死灶(0)。MCAO、MCAO+Hcy组梗死侧脑组织皮质区可见明显白色梗死灶,见图1。MCAO+Hcy组梗死体积百分比为31.51%±0.98%,大于MCAO组的14.16%± 1.01%(n=6,F=2 256.778,P < 0.05)。
2.3Hcy对梗死侧丘脑血管再生的影响结果显示,正常大脑丘脑内BrdU+/laminin+细胞数较少(1.83±0.41),只有少量的新生血管。在MCAO术后第7天,MCAO+Hcy组梗死侧丘脑内BrdU+/laminin+细胞数目(1.00±0.00)较MCAO组(13.33±0.48)显著减少(n=6,F=235.367,P<0.05),见图2。
Hcy是蛋氨酸代谢过程中产生的一个重要中间产物。大量研究表明,体内Hcy浓度过高不仅可致动脉硬化,容易引起心脑血管疾病[9],而且还与阿尔茨海默病(Alzheimer′s disease, AD)、帕金森病(Parkin⁃son′s disease, PD)、抑郁症和精神分裂症等多种神经退行性疾病[10]和精神疾病密切相关[11]。本次研究通过腹腔注射Hcy使大鼠形成高同型半胱氨酸血症,采用线栓法建立MCAO模型观察Hcy对局灶性脑缺血后梗死灶大小的影响,发现Hcy可加重缺血后脑损伤的程度,进一步说明体内高浓度的Hcy具有一定的神经毒性作用,并影响脑缺血患者的预后。
局灶性脑缺血后可导致脑部供血不足,能使缺血区周围的组织灌流得到改善的是在损伤部位新形成的侧支血管[12],损伤部位周围的血管再生是改善脑缺血的一个关键环节,对于脑缺血的治疗和预后有十分重要的作用。研究发现在缺血性脑卒中患者中,Hcy含量显著升高[13],但高同型半胱氨酸血症导致脑血管病的机制尚不完全清楚,目前研究主要认为Hcy能氧化低密度脂蛋白、使血管平滑肌细胞增殖,动脉血管管壁纤维化,血栓沉积,动脉粥样硬化形成[14-15],进而导致心脑血管疾病发生,此外Hcy还与氧化应激有关[16]。Laminin是基底膜的重要组成部分,能够参与细胞的代谢、存活、迁移、增殖和分化,免疫荧光标记体内laminin可反映血管密度[17]。此外,laminin与细胞增殖的标志物BrdU共标记可表示新增殖的血管内皮细胞。本研究发现MCAO+Hcy组laminin+/BrdU+细胞表达较MCAO组减少,说明Hcy可以抑制局灶性脑缺血后血管再生,从而影响脑缺血患者的恢复,即Hcy可能通过抑制血管再生而导致脑部供血不及时,抑制神经再生功能,使脑缺血患者梗死部位病变加重,阻碍自我修复。本研究将为Hcy引起脑梗死的机制探讨提供参考。
(图1、2见插页)
参考文献
[1] Parkkinen S, Ortega FJ, Kuptsova K, et al.Gait impairment in a ratmodel of focal cerebral ischemia[J].Stroke Res Treat, 2013, 2013: 410972.doi: 10.1155/2013/410972.
[2] Chen YJ, Raman G, Bodendiek S, et al.The KCa3.1 blocker TRAM-34 reduces infarction and neurological deficit in a ratmodel of ischemia/reperfusion stroke[J].J Cereb Blood Flowmetab, 2011, 31(12):2363-2374.doi: 10.1038/jcbfm.2011.101.
[3] Ling L, Zhang SP, Ji ZG, et al.Stromal cell-derived factor-1α pro⁃motes angiogenesis in the peri-infarct region in adults with cerebral infarction[J].Chin J Nervment Dis, 2013, 39(10): 587-591.[凌莉,张素平,吉章阁,等.外源性基质细胞衍生因子-1α对大鼠脑梗死后远隔部位细胞增殖和血管再生的影响[J].中国神经精神疾病杂志, 2013, 39(10): 587-591].
[4] Dung C, Liu G, Xing S, et al.Longitudinal cortical volume changes correlate withmotor recovery in patients after acute local subcorti⁃ cal infarction[J].Stroke, 2013, 44(10): 2795-2801.doi: 10.1161/STROKEAHA.113.000971.
[5] Weishaupt N, Riccio P, Dobbs T, et al.Characterization of behav⁃iour and remote degeneration following thalamic Stroke in the Rat [J].Int Jmol Sci, 2015, 16(6): 13921- 13936.doi: 10.3390/ijms160613921.
[6] Chen L, Wang X, Chen X, et al.Tongxinluo attenuates neuronal loss and enhances neurogenesis and angiogenesis in the ipsilateral thala⁃mus and improves neurological outcome after focal cortical infarc⁃tion inhypertensive rats[J].Restor Neurol Neurosci, 2014, 32(4): 533-546.doi: 10.3233/RNN-140403.
[7] Jiang B, Chen Y, Yao G, et al.Effects of differences in serum totalhomocysteine, folate, and vitamin B12 on cognitive impairment in stroke patients[J].BMC Neurol, 2014, 14(1): 217- 221.doi: 10.1186/s12883-014-0217-9.
[8] Longa EZ, Winstein PR, Carlson S, et al.Reversiblemiddle cere⁃bral artery occlusion without craniectomy in rats[J].Stroke, 1989, 20 (1): 84-89.
[9] Dayal S, Blokhin IO, Erger RA, et al.Protective vascular and cardi⁃ac effects of inducible nitric oxide synthase inmice withhyperhomo⁃cysteinemia[J].PLoS One, 2014, 9(9): e107734.doi: 10.1371/jour⁃nal.pone.0107734.
[10] Choudhury S, Borah A.Activation of NMDA receptor by elevatedhomocysteine in chronic liver disease contributes to encephalopathy [J].Medhypotheses, 2015, 85(1): 64- 67.doi: 10.1016/j.me⁃hy.2015.03.027.
[11] Ghanizadeh A, Singh AB, Berkm, et al.Homocysteine as a poten⁃tial biomarker in bipolar disorders: a critical review and suggestions for improved studies[J].Expert Opin Ther Targets, 2015, 19(7): 927-939.doi: 10.1517/14728222.2015.1019866.
[12] Ling L, Zhang S, Ji Z, et al.Therapeutic effects of lipo-prostaglan⁃din E1 on angiogenesis and neurogenesis after ischemic stroke in rats[J].Int J Neurosci, 2015, 22:1-20.
[13] Zhou SN, Jiang W.A brief discussion on the secondary prevention of ischemic stroke[J].Chin J Cuntemp Neurul Neurosurg, 2015, 15 (3): 171-176.[周盛年,姜维.浅谈缺血性卒中二级预防[J].中国现代神经疾病杂志, 2015, 15(3): 171-176] .
[14] Baggott JE, Tamura T.Homocysteine, iron and cardiovascular dis⁃ease: ahypothesis[J].Nutrients, 2015, 7(2): 1108- 1118.doi: 10.3390/nu7021108.
[15] Li JJ, Li Q, DuhP, et al.Homocysteine triggers inflammatory re⁃sponses inmacrophages through inhibiting CSE-H2S signaling via DNAhypermethylation of CSE promoter[J].Int Jmol Sci, 2015, 16 (6): 12560-12577.doi: 10.3390/ijms160612560.
[16] Sheng CX, LihH.Oxidative stress and risk factors for cerebrovascu⁃lar diseases[J].Chin J Cuntemp Neurul Neurosurg, 2014, 14(10): 910-914.[盛冲霄,黎红华.氧化应激与脑血管病危险因素[J].中国现代神经疾病杂志, 2014, 14(10): 910-914] .
[17] Ramadhani D, Tofrizal A, Tsukada T, et al.Histochemical analysis of laminin α chains in diethylstilbestrol-induced prolactinoma in rats[J].Actahistochem Cytochem, 2015, 48(2): 69- 73.doi: 10.1267/ahc.14067.
(2015-06-24收稿2015-07-25修回)
(本文编辑李鹏)
Effects ofhomocysteine on post-cerebral ischemic angiogenesis in rats
GOU Yun,hUANG Guowei, ZHAO Yaqian, CHEN Shuang, ZHANG Xumei△
Department of Nutrition and Foodhygiene, School of Publichealth, Tianjinmedical University, Tianjin 300070, China
△Corresponding Author E-mail:zhangxumei@tijmu.edu.cn
Abstract:Objective To explore the role ofhomocysteine(Hcy)on angiogenesis at peri infarct region after focal cere⁃bral ischemia in rats, to elucidate inhibitory factors of angiogenesis, and to establish a clinic foundation for clinical brain functional recovery.Methods Spragur-Dawley (SD)male rats (n=36) were randomly divided into three groups with 12 rats in each group including Sham Operation (SO) group,middle cerebral artery occlusion (MCAO) group andmCAO+Hcy group.The rats in Sham andmCAO groups were intra-peritoneally injected with 5mL/(kg·d) saline and rats inmCAO +hcy group were injected with 2% 5mL/(kg·d)hey solution from the same route.MCAO was introduced by intraluminal filamentmeth⁃od after 7 dhcy intervention.Rat brains wereharvested on the 7thday aftermCAO.BrdU(50mg/kg, as amarker of cell pro⁃liferation)was intraperitoneally injected three days before the rats were killed.High performance liquid chromatography (HPLC)was used tomeasure serumhcy concentration in rats.Brain infarction size was observed by TTC staining.Immuno⁃fluorescence staining was used to detect the number of BrdU+/laminin+cells at the thalamus of infarction side.Results Se⁃rumhcy concentration significantlyhigher inmCAO +hcy group than in SO andmCAO groups(P < 0.05).Brain damage increased and the number of BrdU+/laminin+cells decreased inmCAO +hcy group compared with those ofmCAO group (P < 0.05).ConclusionIncreasedhcy concentration in rats lead tomore severe damage of cerebral infarction as well as to inhibit the angiogenesis at surrounding ischemia area.
Key words:brain infarction;diseasemodels, animal;rats, Sprague-Dawley;homocysteine;angiogenesis
通讯作者△E-mail:zhangxumei@tijmu.edu.cn
作者简介:苟芸(1990),女,硕士在读,主要从事营养与神经退行性疾病研究
基金项目:国家自然科学基金资助项目(81373003);中国博士后科学基金(2014M550148)
中图分类号:R743
文献标志码:A
DOI:10.11958/59123
作者单位:天津医科大学公共卫生学院营养与食品卫生学系(邮编300070)