姜楠楠,尹 佳
[中国医学科学院 北京协和医学院 北京协和医院变态(过敏)反应科, 北京 100730]
ChinJAllergyClinImmunol,2016,10(3):269- 275
经典的Ⅰ型变态反应的发生是变应原结合在肥大细胞表面IgE抗体并使其桥联,通过信号传导引起组胺等生物活性物质的释放,从而导致临床症状的发生。严重过敏反应是最严重的Ⅰ型变态反应,其临床诊断标准是累及两个及两个以上的系统,主要包括皮肤、胃肠道系统、呼吸系统、心血管系统等。症状轻重不同,可在几分钟之内从最轻微的皮肤症状迅速发展至死亡[1]。
严重过敏反应的临床流行病学数据有很大差异,可能是严重过敏反应的临床诊断标准不一致所致。2006年美国变态反应、哮喘与免疫学学会(The American Academy of Allergy, Asthma & Immunology,AAAAI)一项系统回顾研究显示严重过敏反应的终生患病率是0.05%~0.2%[2],2013年欧洲变应性反应与临床免疫学会(European Academy of Allergy and Clinical Immunology,EAACI)的一项系统回顾研究显示欧洲国家严重过敏反应发病率是(1.5~7.9)/10万人年[3]。尽管严重过敏反应的发生大多是由变应原诱发,但伴发因素在其中的作用越来越受到重视。运动是最早被人们认识也是目前研究最多的伴发因素。食物依赖运动诱发的严重过敏反应(food-dependent exercise induced anaphylaxis,FDEIA)已被单独列为一种疾病。1979年Maulitz 等[4]首次报道了贝类依赖运动诱发的严重过敏反应。其他研究较多的伴发因素为非甾体类抗炎药如阿司匹林、酒精及感染性疾病[1,5- 9]。 欧洲国家严重过敏反应的研究及登记数据显示[7,10- 14],30%成人严重过敏反应有伴发因素存在,3%~23%严重过敏反应发生在运动过程中,1%~15.2%的严重过敏反应有酒精因素参与,6.1%~9%的重度严重过敏反应阿司匹林为伴发因素,2.5%~3%儿童严重过敏反应有感染性因素的参与,而在成人严重过敏反应中的比例为1.3%~11%。确定变应原诱因及伴发因素是严重过敏反应的诊断、危险因素评估以及患者教育的关键,可降低患者发生致命性严重过敏反应的风险。目前关于伴发因素在过敏休克发生中的作用机制主要是增加变应原生物利用度和降低效应细胞活化的阈值[15]。
Maulitz 等[4]首次提出了运动是严重过敏反应的伴发/加重因素。他报道了1例患者在进食贝类后慢跑过程中出现严重过敏反应,但运动和贝类作为单独激发不能导致严重过敏反应的发生。随后报道了一系列类似病例,FDEIA被定义为一类疾病。尽管运动依赖的严重过敏反应并不只发生于食物过敏的患者,FDEIA是最常见的类型。目前已有研究显示多种食物可导致FDEIA的发生,比如开心果、肉类、虾、小麦等[16]。FDEIA常发生在慢跑过程中,但症状可由轻度和中度运动强度诱发[17]。对敏感患者来说,轻微日常活动足以诱发严重过敏反应,比如1例肉类过敏老年女性在熨衣服过程中发生严重过敏反应[18]。
目前,小麦依赖运动诱发的严重过敏反应(wheat-dependent exercise induced anaphylaxis,WDEIA)为FDEIA最常见的类型。Palosuo 等[19]首次提出了WDEIA。检测血清小麦醇溶蛋白ω- 5-gliadin (Tri a 19)特异性IgE的水平是诊断WDEIA最有价值的工具[20]。运动作为伴发因素在食物诱发严重过敏反应中的作用机制主要集中于以下两个方面:其一是运动增加了食物变应原的生物利用度,另一方面运动降低肥大细胞和嗜碱粒细胞活化阈值。WDEIA的研究显示,运动可通过破坏肠道屏障,增加小肠对变应原的吸收,Matsuo 等[21]研究显示WDEIA患者进食小麦制品后运动可以显著增加血清小麦醇溶蛋白的水平,可能的原因是运动可导致小肠屏障的破坏,但有研究显示只有高强度和长时间(>8 h)的运动才可引起小肠屏障的破坏,而且诱发FDEIA的运动强度有很大差异,即使是轻微活动也可诱发症状,所以除了运动引起小肠屏障破坏机制外,可能还另有机制介导[22]。Yano等[23]的研究显示蛋白溶菌酶致敏的小鼠给予口服溶菌酶激发后,运动组和非运动组小鼠小肠摄取溶菌酶均有增加,说明致敏本身即可导致小肠屏障的破坏。肠道对变应原的吸收增加可能受个体致敏程度和运动强度的双重影响。
除了增加变应原的生物利用度,运动还可影响肥大细胞和嗜碱粒细胞活化阈值。对于肥大细胞来说,这种假设主要基于运动后速发型皮肤反应的改变。FDEIA患者运动后皮肤对特定变应原的反应性增强[24]。有学者提出高强度的运动可通过血浆渗透压增加和pH值的改变影响效应细胞的阈值[22,25- 26],他们通过体外研究显示渗透压达到340 mOsm才可使肥大细胞活化阈值下降,即使在高强度运动如跑半程马拉松后,渗透压仅能升高至293 mOsm[22],所以通过血浆渗透压改变效应细胞活性的理论有待进一步研究。另一个可能的原因是肠道黏膜谷氨酰胺转胺酶活化使效应细胞脱颗粒增加,有研究显示长跑后白细胞介素- 6(interleukin- 6,IL- 6)的表达量增加50~100倍[27],IL- 6诱导肠道黏膜谷氨酰胺转胺酶活化从而导致ω- 5-醇溶蛋白肽段的聚合,使效应细胞上的sIgE桥联活化效应细胞[28]。此外运动诱发的内啡肽释放能够使肥大细胞或者嗜碱粒细胞活化,一项体外研究显示β内啡肽可导致肥大细胞脱颗粒和组胺释放。过敏性鼻炎患者的鼻腔给予β内啡肽和变应原激发后鼻腔分泌物中的组胺水平显著增高[29],而只给予内啡肽的患者组胺水平没有变化[30]。
尽管目前相关科研数据有限,但仍可得出以下结论:(1)运动可增加肠道对变应原的吸收;(2)诱发严重过敏反应的运动强度取决于多种因素,如患者致敏状态。在某些患者,伴发因素可同时存在,如运动+酒精或者运动+阿司匹林。
非甾体类抗炎药
一些药物可以参与食物诱发的严重过敏反应,非甾体类抗炎药是研究最多的药物伴发因素。1984年Cant等[31]首次报道了1例14岁男孩服用阿司匹林后进食花生诱发严重过敏反应,既往单独进食花生仅有一过性轻度过敏反应发生。Flemstrom 等[32]在右旋糖酐过敏的豚鼠模型中,单纯给予右旋糖酐无反应,而同时给予右旋糖酐和阿司匹林可诱发休克。与运动效应类似,阿司匹林可能增加变应原的肠道吸收。Matsuo等[21]研究显示,WDEIA患者同时摄入小麦制品和阿司匹林比单纯摄入小麦的患者血清醇溶蛋白的浓度高5倍。另一可能的机制是,阿司匹林影响小肠屏障紧密连接的建立。体外模型实验显示给予豚鼠5 mmol/L的阿司匹林可以减少紧密连接蛋白- 7的产生,从而显著增加右旋糖酐的通透性[32]。
除了增加变应原的肠道吸收外,非甾体类抗炎药或可直接调节效应细胞活性。体外研究显示肥大细胞提前用阿司匹林孵育能直接介导FcεRⅠ依赖的肥大细胞脱颗粒和白三烯C4(Leukotriene C4,LTC4)释放[33- 34]。FDEIA患者[21,35]提前服用阿司匹林能增加食物变应原的皮肤反应性。
其他药物
能导致肥大细胞和嗜碱粒细胞介质释放的药物均为潜在的IgE介导的严重过敏反应的伴发因素,如碘造影剂、抗生素及某些阿片类药物[36- 37]。由于胃酸消化可降低食物变应原的变应原性,一些抑制胃酸分泌的药物如H2受体拮抗剂、质子泵抑制剂等可使胃酸的pH值升高,从而不能有效降低食物变应原的变应原性,导致大分子变应原到达肠道诱发局部或系统性变态反应的发生。Diesner等[38]对卵清蛋白致敏的小鼠应用质子泵抑制剂可增加激发试验中严重过敏反应发生风险。Untersmayr等[39]一项前瞻性研究显示10%患者服用质子泵抑制剂治疗3个月后血清原有食物特异性IgE水平显著增高,而15%患者出现新的食物特异性IgE抗体。若特应性个体对某种胃酸不耐受的食物变应原过敏,临床仅表现为口腔变态反应综合征,在服用质子泵抑制剂期间大量食入该变应原,有发生严重过敏反应的风险[39- 40]。
有研究显示抗高血压药物能增加重度严重过敏反应发生风险。Lee等[41]对302例急诊严重过敏反应的患者研究显示服用抗高血压药物的个体重度严重过敏反应的风险增加1.8倍,住院风险增加3倍。Rueff等[8]的研究显示重度蜂毒严重过敏反应与血管紧张素转化酶抑制剂类药物应用相关,而与肾上腺素β受体拮抗剂的应用不相关。然而,Brown等[42]的研究显示,肾上腺素β受体拮抗剂和血管紧张素转化酶抑制剂类药物应用不增加重度严重过敏反应发作风险,这说明抗高血压药物与严重过敏反应的相关性还不明确,可能的机制为肾上腺素β受体拮抗剂(普萘洛尔、美托洛尔等)通过β肾上腺素受体cAMP系统效应细胞(肥大细胞、嗜碱粒细胞)使信号传导通路受到抑制,导致效应细胞不稳定[43]。另外,肾上腺素β受体拮抗剂加重严重过敏反应的机制可能与心脏收缩力下降,干扰了肾上腺素的治疗作用有关[41]。血管紧张素转化酶可以使缓激肽失活,血管紧张素转化酶抑制剂类药物的应用可使缓激肽水平升高[44]。缓激肽能促进一氧化氮的合成,使血管扩张。缓激肽和其他炎性介质的累积可诱发血管痉挛[45]。此外,缓激肽水平的急速升高可导致严重的咽喉部水肿[46]。因此,血管紧张素转化酶抑制剂类的药物可导致血管神经性水肿、低血压以及气管痉挛。Summers等[47]研究花生坚果过敏的患者,血清血管紧张素转化酶水平降低与喉头水肿相关,而与气管痉挛、意识丧失不相关。血清血管紧张素转化酶水平<37.0 mmol/L的患者发生严重喉头水肿的风险增加8.6倍。Lee等[41]的研究未显示这种相关性,而在该项研究中应用血管紧张素转化酶抑制剂类药物严重过敏反应的患者3个以上系统累及的风险增加1.3倍,住院治疗的风险增加2.2倍。然而,这些机制仍然有争议并有待进一步研究。
越来越多的证据提示多种药物可作为严重过敏反应的伴发因素,尤其是非甾体类抗炎药类的药物。因此严重过敏反应的诊断应该考虑药物相关因素,并告知患者其为严重过敏反应尤其是重度严重过敏反应发生的危险因素。肌松剂或造影剂可能诱发严重过敏反应,医师应该避免开处方或者事先给予糖皮质激素或者抗组胺药预防。如果有口腔变态反应综合征的患者需要使用质子泵抑制剂类药物,医师应告知患者质子泵抑制剂类药物可导致变应原不被胃酸完全降解,有诱发严重过敏反应的风险。心肌梗死、心律失常或者严重心力衰竭的患者使用肾上腺素β受体拮抗剂,避免应用造成的风险会高于严重过敏反应发生的风险,是否应用肾上腺素β受体拮抗剂取决于个体的利益风险比。
Gonzalez-Quintela等[48]的一项成人过敏性疾病流行病学显示,酒精摄入与总IgE水平升高和气传花粉致敏相关。10%食物过敏[49]或运动诱发的严重过敏反应[50]的患者在饮酒后症状更容易发生。Uguz等[14]的研究显示15.2%成人严重过敏反应中有酒精因素的参与,而法国食物过敏在线登记数据显示8.9%的严重过敏反应有酒精因素的参与。与阿司匹林的作用类似,酒精使小肠上皮紧密连接松弛,从而使小肠对变应原尤其是小分子蛋白吸收率增加[22, 51]。但相关实验数据少见。
多项研究显示在感染性疾病的早期阶段或者轻度感染能够加重严重过敏反应的发生[7,9- 14,52]。2.5%~3%儿童严重过敏反应有感染性因素存在,而1.3%~11%成人严重过敏反应有感染因素的存在。感染因素通常与花粉或蜂毒特异性免疫治疗(allergen specific immunology,SIT)后出现严重过敏性反应相关[1, 52]。由于感染因素在SIT后有出现严重过敏反应的风险,SIT的指南已建议在感染情况下暂停SIT的治疗。Staden等[53]报道在25例鸡蛋和牛奶口服脱敏的儿童中,12例发生了严重过敏反应,最常见伴发因素为运动和感染。
感染作为严重过敏反应的伴发因素机制还不明确。病原体本身可作为变应原致敏机体和产生IgE或使已存在的IgE分子产生桥联[54- 56]。另外,IgE、IgM及IgG抗体与抗原能够形成可溶性的抗原抗体复合物。在病理情况下,免疫复合物可通过补体激活系统导致过敏毒素C3a和C5a以及促炎因子和趋化因子的产生[57]。除了FcεRⅠ,嗜碱粒细胞和肥大细胞也表达FcγR,其能够促进效应细胞脱颗粒[58]。FcγRⅠ导致的肥大细胞脱颗粒是由于IgG1亚群介导的[59- 60]。因此,感染过程中IgG的产生或可影响严重过敏反应的发生。固有免疫系统可能也可参与Ⅰ型变态反应的发生。细菌、真菌以及病毒是通常所说的病原体相关分子模式,能直接连接在病原体识别受体上从而导致细胞活化和免疫应答而无需提前致敏[61- 62]。肥大细胞和嗜碱粒细胞表达病原体识别受体能被不同的病原体相关分子模式激活[63- 64],因此能够调节效应细胞的反应状态[65]。病原体相关分子模式的肽聚糖能够诱发人[66]和大鼠肥大细胞[67]的脱颗粒。有些病原体相关分子模式也能调节和抑制肥大细胞的脱颗粒使固有的肥大细胞的激活处于平衡状态[68]。病原体也能够激活不同系统导致过敏毒素C3a和C5a的产生。有研究显示C3a和C5a能触发肥大细胞组胺释放,C5a的作用强于C3a[69]。然而,C3a和C5a的激活作用仅限于一部分肥大细胞亚群,因为黏膜肥大细胞不表达过敏毒素的受体[70],而且其作用于严重过敏反应的机制还不明确[71]。但细菌或者病毒产物能够被肥大细胞和嗜碱粒细胞的受体感知,在某些特定的情况下,触发或者增强肥大细胞脱颗粒。但微生物因素作为严重过敏反应的伴发因素的证据尚不足,应进一步研究。了解感染因素是严重过敏反应相关危险因素对SIT治疗和管理非常重要,在感染情况下SIT必须暂停或者减少剂量。
严重过敏反应的发生及其严重程度取决于多种因素,包括变应原本身的性质、变应原的剂量、患者本身的致敏状态及变应原IgE的结合力。近年来,严重过敏反应的伴发因素在其发生中的作用受到重视,伴发因素包括运动、酒精摄入、药物以及感染性疾病,其作用机制仍需要更深入的研究。
[1]Simons FE, Ardusso LR, Bilò MB, et al. World Allergy Organization anaphylaxis guidelines: Summary[J]. J Allergy Clin Immunol, 2011, 127: 587- 593.
[2]Lieberman P, Camargo CA, Bohlke K, et al. Epidemiology of anaphylaxis: findings of the American College of Allergy, Asthma and Immunology epidemiology of Anaphylaxis Working Group [J]. Ann Allergy Asthma Immunol, 2006, 97: 596- 602.
[3]Panesar SS, Javad S, De Silva D, et al. The epidemiology of anaphylaxis in Europe: a systematic review [J]. Allergy, 2013, 68:1353- 1561.
[4]Maulitz RM, Pratt DS, Schocket AL. Exercise-induced anaphylactiv reaction to shellfish [J]. J Allergy Clin Immunol, 1979, 63: 433- 434.
[5]Woelbing F, Biedermann T. Augmentation to Anaphylaxis: The Role of Aspirin and Physical Exercise as Co-factors [J]. Acta Dermato-Venereologica, 2012, 92: 451- 453.
[6]Pfeffer I, Fischer J, Biedermann T. Acetylsalicylic acid dependent anaphylaxis to carrots in a patient with mastocytosis [J]. J Dtsch Dermatol Ges, 2011, 9: 230- 231.
[7]Worm M, Scherer K, Koehli-Wieaner A, et al. Food-induced anaphylaxis and cofactors-data from the anaphylaxis registry [J]. Allergologie, 2011, 34: 329- 337.
[8]Rueff F, Przybilla B, Bilo MB, et al. Predictors of severe systemic anaphylactic reactions in patients with Hymenoptera venom allergy: Importance of baseline serum tryptase-a study of the European Academy of Allergology and Clinical Immunology Interest Group on Insect Venom Hypersensitivity [J]. J Allergy Clin Immunol, 2009, 124: 1047- 1054.
[9]Mazur N, Patterson R, Perlman D. A case of idiopathic anaphylaxis associated with respiratory infections [J]. Ann Allergy Asthma Immunol, 1997, 79: 546- 548.
[10] Hompes S, Koehli A, Nemat K, et al. Provoking allergens and treatment of anaphylaxis in children and adolescents-data from the anaphylaxis registry of German-speaking countries [J]. Pediatr Allergy Immunol, 2011, 22: 568- 574.
[11] Mullins RJ. Anaphylaxis: risk factors for recurrence [J]. Clin Exp Allergy, 2003, 33: 1033- 1040.
[12] De Swert LFA, Bullens D, Raes M, et al. Anaphylaxis in referred pediatric patients: demographic and clinical features, triggers, and therapeutic approach [J]. Eur J Pediatr, 2008, 167: 1251- 1261.
[13] Treudler R, Kozovska Y, Simon JC. Severe immediate type hypersensitivity reactions in 105 German adults: When to diagnose anaphylaxis [J]. J Investig Allergol Clin Immunol, 2008, 18: 52- 58.
[14] Uguz A, Lack G, Pumphrey R, et al. Allergic reactions in the community: a questionnaire survey of members of the anaphylaxis campaign [J]. Clin Exp Allergy, 2005, 35: 746- 750.
[15] Wolbing F, Fischer J, Koberle M, et al. About the role and underlying mechanisms of cofactors in anaphylaxis [J]. Allergy, 2013, 68: 1085- 1092.
[16] Wong GK, Krishna MT. Food-Dependent Exercise-Induced Anaphylaxis: Is Wheat Unique? [J]. Curr Allergy Asthma Rep, 2013, 13: 639- 644.
[17] Barg W, Medrala W, Wolanczyk-Medrala A. Exercise-Induced Anaphylaxis: An Update on Diagnosis and Treatment [J]. Curr Allergy Asthma Rep, 2011, 11: 45- 51.
[18] Biedermann T, Schopf P, Rueff F, et al. Exercise-induced anaphylaxis after eating pork or beef [J]. Dtsch Med Wochenschr, 1999, 124: 456- 458.
[19] Palosuo K, Alenius H, Varjonen E, et al. A novel wheat gliadin as a cause of exercise-induced anaphylaxis [J]. J Allergy Clin Immunol, 1999, 103: 912- 917.
[20] Matsuo H, Kohno K, Niihara H, et al. Specific IgE determination to epitope peptides of omega- 5 gliadin and high molecular weight glutenin subunit is a useful tool for diagnosis of wheat-dependent exercise-induced anaphy-laxis [J]. J Immunol, 2005, 175: 8116- 8122.
[21] Matsuo H, Morimoto K, Akaki T, et al. Exercise and aspirin increase levels of circulating gliadin peptides in patients with wheat-dependent exercise-induced anaphylaxis [J]. Clin Exp Allergy, 2005, 35: 461- 466.
[22] Robson-Ansley P, Du Toit G. Pathophysiology, dia-gnosis and management of exercise-induced anaphylaxis [J]. Curr Opin Allergy Clin Immunol, 2010, 10: 312- 317.
[23] Yano H, Kato Y, Matsuda T. Acute exercise induces gastrointestinal leakage of allergen in lysozyme-sensitized mice [J]. Eur J Appl Physiol, 2002, 87: 358- 364.
[24] Romano A, Difonso M, Giuffreda F, et al. Diagnostic work-up for food dependent exercise-induced ana-phylaxis [J]. Allergy, 1995, 50: 817- 824.
[25] Barg W, Wolanczyk-Medrala A, Obojski A, et al. Food-dependent exercise-induced anaphylaxis: Possible impact of increased basophil histamine releasability in hyperosmolar conditions [J]. J Investig Allergol Clin Immunol, 2008, 18: 312- 315.
[26] Wolanczyk-Medrala A, Barg W, Gogolewski G, et al.Influence of hyperosmotic conditions on basophil CD203C upregulation in patients with food-dependent exercise induced anaphylaxis[J]. Ann Agric Environ Med, 2009, 16: 301- 304.
[27] Ostrowski K, Rohde T, Zacho M, et al. Evidence that interleukin- 6 is produced in human skeletal muscle during prolonged running [J]. J Physiol, 1998, 508: 949- 953.
[28] Palosuo K, Varjonen E, Nurkkala J, et al. Transglu-taminase-mediated cross-linking of a peptic fraction of omega- 5 gliadin enhances IgE reactivity in wheat-dependent, exercise-induced anaphylaxis [J]. J Allergy Clin Immunol, 2003, 111: 1386- 1392.
[29] Teofoli P, Frezzolini A, Puddu P, et al. The role of proopiomelanocortin-derived peptides in skin fibroblast and mast cell functions [M]∥Luger TA, Paus R, Lipton JM, et al. Cutaneous Neuroimmunomodul-ation: The Proopiomelanocortin System, 1999: 268- 276.
[30] Baumgarten CR, Schmitz P, O’Connor A, et al. Effects of beta-endorphin on nasal allergic inflammation [J]. Clin Exp Allergy, 2002, 32: 228- 236.
[31] Cant AJ, Gibson P, Dancy M. Food hypersensitivity made life threatening by ingestion of aspirin [J]. British Medical Journal, 1984, 288: 755- 756.
[32] Flemstrom G, Marsden NV, Richter W. Passive cutaneous anaphylaxis in guinea pigs elicited by gastric absorption of dextran induced by acetylsalicylic acid. [J]. Int Arch Allergy Appl Immunol, 1976, 51: 627- 636.
[33] Mortaz E, Redegeld FA, Nijkamp FP, et al. Dual effects of acetylsalicylic acid on mast cell degranulation, expression of cyclooxygenase- 2 and release of pro-inflammatory cytokines [J]. Biochem Pharmacol, 2005, 69: 1049- 1057.
[34] Suzuki Y, Ra C. Analysis of the Mechanism for the Development of Allergic Skin Inflammation and the Application for Its Treatment: Aspirin Modulation of IgE-Dependent Mast Cell Activation: Role of Aspirin-Induced Exacerbation of Immediate Allergy [J]. J Pharmacol Sci, 2009, 110: 237- 244.
[35] Aihara M, Miyazawa M, Osuna H, et al. Food-dependent exercise-induced anaphylaxis: influence of concurrent aspirin administration on skin testing and provocation [J]. Br J Dermatol, 2002, 146: 466- 472.
[36] Brockow K, Ring J. Anaphylaxis to radiographic contrast media [J]. Curr Opin Allergy Clin Immunol, 2011, 11: 326- 331.
[37] Thong BY, Yeow C. Anaphylaxis during surgical and interventional procedures [J]. Ann Allergy Asthma Immunol, 2004, 92: 619- 628.
[38] Diesner SC, Knittelfelder R, Krishnamurthy D, et al. Dose-dependent food allergy induction against ovalbumin under acid-suppression: A murine food allergy model [J]. Immunol Lett, 2008, 121: 45- 51.
[39] Untersmayr E, Jensen-Jarolim E. The effect of gastric digestion on food allergy [J]. Curr Opin Allergy Clin Immunol, 2006, 6: 214- 219.
[40] Untersmayr E, Jensen-Jarolim E. The role of protein digestibility and antacids on food allergy outcomes [J]. J Allergy Clin Immunol, 2008, 121: 1301- 1308.
[41] Lee S, Hess EP, Nestler DM, et al. Antihypertensive medication use is associated with increased organ system involvement and hospitalization in emergency department patients with anaphylaxis [J]. J Allergy Clin Immunol, 2013, 131: 1103- 1108.
[42] Brown SG. Clinical features and severity grading of anaphylaxis [J]. J Allergy Clin Immunol, 2004, 114: 371- 376.
[43] Toogood JH. Risk of anaphylaxis in patients receiving beta-blocker drugs[J]. J Allergy Clin Immunol, 1988, 81: 1- 5.
[44] Blais C, Marceau F, Rouleau JL, et al. The kallikrein-kininogen-kinin system: lessons from the quantification of endogenous kinins [J]. Peptides, 2000, 21: 1903- 1940.
[45] Overlack A. ACE inhibitor-induced cough and bronchos-pasm-Incidence, mechanisms and management [J]. Drug Safety, 1996, 15: 72- 78.
[46] Nussberger J, Cugno M, Amstutz C, et al. Plasma bradykinin in angio-oedema [J]. Lancet, 1998, 351: 1693- 1697.
[47] Summers CW, Pumphrey RS, Woods CN, et al. Factors predicting anaphylaxis to peanuts and tree nuts in patients referred to a specialist center [J]. J Allergy Clin Immunol, 2008, 121: 632- 638.
[48] Gonzalez-Quintela A, Gude F, Boquete O, et al. Association of alcohol consumption with total serum immunoglobulin E levels and allergic sensitization in an adult population-based survey [J]. Clin Exp Allergy, 2003, 33: 199- 205.
[49] Kanny G, Moneret-Vautrin DA, Flabbee J, et al. Population study of food allergy in France [J]. J Allergy Clin Immunol, 2001, 108: 133- 140.
[50] Shadick NA, Liang MH, Partridge AJ, et al. The natural history of exercise-induced anaphylaxis: Survey results from a 10-year follow-up study [J]. J Allergy Clin Immunol, 1999, 104: 123- 127.
[51] Pastorello EA, Farioli L, Pravettoni V, et al. Iden-tification of grape and wine allergens as an endochitinase 4, a lipid-transfer protein, and a thaumatin [J]. J Allergy Clin Immunol, 2003, 111: 350- 359.
[52] Bousquet J, Menardo JL, Velasquez G, et al. Systemic reactions during maintenance immunotherapy with honey bee venom[J].Ann Allergy, 1988, 61: 63- 68.
[53] Staden U, Rolinck-Werninghaus C, Brewe F, et al. Specific oral tolerance induction in food allergy in children: efficacy and clinical patterns of reaction [J]. Allergy, 2007, 62: 1261- 1269.
[54] Grunewald SM, Hahn C, Wohlleben G, et al. Infection with influenza A virus leads to flu antigen-induced cutaneous anaphylaxis in mice [J]. J Invest Dermatol, 2002, 118: 645- 651.
[55] Sharma BK, Talwar KK, Bhatnagar V, et al. Recurrent anaphylaxis due to plasmodium vivax infeciton [J]. Lancet, 1979, 1: 1340- 1341.
[56] Vuitton DA. Echinocloccosis and allergy [J]. Clin Rev Allergy Immunol, 2004, 26: 93- 104.
[57] Simons FE. Anaphylaxis: Recent advances in assess-ment and treatment [J]. J Allergy Clin Immunol, 2009, 124: 625- 636.
[58] Tkaczyk C, Okayama Y, Metcalfe DD, et al. Fc gamma receptors on mast cells: Activatory and inhibitory regulation of mediator release [J]. Int Arch Allergy Immunol, 2004, 133: 305- 315.
[59] Okayama Y, Hagaman DD, Metcalfe DD. A comparison of mediators released or generated by IFN-gamma-treated human mast cells following aggregation of Fc gamma RI or Fc epsilon RI [J]. J Immunol, 2001, 166: 4705- 4712.
[60] Okayama Y, Tkaczyk C, Metcalfe DD, et al. Comparison of Fc epsilon RI-and Fc gamma RI-mediated degranulation and TNF-alpha synthesis in human mast cells: selective utilization of phosphatidylinositol-3-kinase for Fc gamma Ri-induced degranulation [J]. European J Immunol, 2003, 33: 1450- 1459.
[61] Volz T, Kaesler S, Biedermann T. Innate immune sensing 2.0-from linear activation pathways to fine tuned and regulated innate immune networks [J]. Exp Dermatol, 2012, 21: 61- 69.
[62] Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system [J]. Int Rev Immunol, 2011, 30: 16- 34.
[63] Fukata M, Vamadevan AS, Abreu MT. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders [J]. Seminars in Immunology, 2009, 21: 242- 253.
[64] Metz M, Maurer M. Mast cells-key effector cells in immune responses [J]. Trends Immunol, 2007, 28: 234- 241.
[65] Qiao HH, Andrade MV, Lisboa FA, et al. Fc epsilon R1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells [J]. Blood, 2006, 107: 610- 618.
[66] Wu L, Feng BS, He SH, et al. Bacterial peptidoglycan breaks down intestinal tolerance via mast cell activation: The role of TLR2 and NOD2 [J]. Immunol Cell Biol, 2007, 85: 538- 545.
[67] Supajatura V, Ushio H, Nakao A, et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity [J]. J Clin Invest, 2002, 109: 1351- 1359.
[68] Kasakura K, Takahashi K, Aizawa T, et al. A TLR2 ligand suppresses allergic inflammatory reactions by acting directly on mast cells [J]. Int Arch Allergy Immunol, 2009, 150: 359- 369.
[69] Erdei A, Kerekes K, Pecht I. Role of C3a and C5a in the activation of mast cells [J]. Exp Clin Immunogenet, 1997, 14: 16- 18.
[70] Ali H. Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a [J]. Immunol Lett, 2010, 128: 36- 45.
[71] Windbichler M, Echtenacher B, Takahashi K, et al. Investigations on the involvement of the lectin pathway of complement activation in anaphylaxis [J]. Int Arch Allergy Immunol, 2006, 141: 11- 23.