蒋 军(综述),涂 彧(审校)
(1.佛山市第一人民医院肿瘤中心放疗科,广东 佛山 528000; 2.苏州大学医学部放射医学与公共卫生学院,江苏 苏州 215006)
放射性肺炎相关因素的研究进展
蒋军1(综述),涂彧2※(审校)
(1.佛山市第一人民医院肿瘤中心放疗科,广东 佛山 528000; 2.苏州大学医学部放射医学与公共卫生学院,江苏 苏州 215006)
摘要:虽然目前放射治疗技术取得了革命性的进步,如调强放射治疗、图像引导放射治疗、容积弧形调强放疗等,但放射性肺炎(RP)的发生率仍居高不下。RP一旦发生,常不可逆转且无特效治疗方法,严重影响患者的生活质量。因此,及时预防和减少RP的发生显得尤为重要。RP的发生与一些剂量-体积参数、联合化疗或辐射防护剂阿米福汀、放疗前手术、肿瘤位于中下肺、细胞因子(白细胞介素6和10)、转化生长因子β1、KL-6、血管紧张素转换酶、吸烟史、慢性肺疾病、肺功能状况及糖尿病等密切相关。
关键词:放射性肺炎;剂量体积直方图;危险因素;化疗;细胞因子;吸烟
放射性肺炎(radiation pneumonitis,RP)是胸部恶性肿瘤放射治疗的常见并发症,对患者生活质量造成很大影响。文献报道,胸部肿瘤接受根治性放疗者RP的发生率为13%~37%[1]。RP一旦发生,往往向肺纤维化发展,常不可逆转,且无特效治疗方法。严重的RP预后极差,约50%的患者于2个月内死亡[2]。所以,如何避免及减少RP的发生是胸部恶性肿瘤(尤其是肺癌)放射治疗中必须考虑的问题。虽然有许多关于RP风险因素(如剂量因素、临床因素、生化标志物等)的探讨,但仍存在争议。现就目前RP的相关因素予以综述。
1物理剂量
肺正常组织受照体积及剂量是RP最主要的预测因素,剂量体积直方图能很好地评估肺的受量及评估临床上发生RP的医源性风险。很多数据来源于非小细胞肺癌(non-small cell lung cancer,NSCLC)放射治疗研究,因为在这种情况下正常肺的受量较高。
Emami等[3]研究正常组织的耐受性时显示,1/3的正常肺组织接受45 Gy的剂量、2/3的正常肺接受30 Gy的剂量、全肺接受17.5 Gy的剂量时,5年发生严重RP的风险为5%。因此,有学者[4]指出,肺V20(受到20 Gy照射肺组织占全肺总体积的百分数)与严重的RP有强的相关性,当V20<8%时,发生RP的风险为0%;相反,当V20 22%~31%时,发生2级RP的风险可达8%。还有研究认为,肺V20可作为RP最佳的预测参数[5]。肺V30是另外一个重要的预测指标,文献报道当V30<18%时,发生RP的风险可能性较低,当V30≥18%时发生RP的风险可达24%[6]。同样也有学者支持将肺V30作为RP的预测指标[7]。另外,在肺癌的立体定向放疗中,也有报道,V25>4.2%与发生2级及以上的RP有关[8]。
随着高尖放疗技术,如调强放疗技术、容积弧形调强放疗技术等的使用,虽然减少了患者接受高剂量照射的肺体积,却增加了患者接受低剂量照射的肺体积[9]。研究已经证实,接受低剂量照射肺体积的大小与RP的发生也有相关性[10]。研究显示,肺V5与RP密切相关,当V5≤42%时,发生3及或以上的RP的风险为3%,当V5>42%时,发生RP的风险可达38%[11]。国内文献还报道,V5可作为RP的独立预测因素[12]。Yorke等[13]认为,肺V5、V10、V13对预测3级以上的急性RP比V20更具优势。
肺平均剂量(mean lung dose,MLD)与RP的相关性也不能忽视。研究显示,当MLD为0~8 Gy、8~16 Gy、16~24 Gy、24~36 Gy时,发生2级RP的风险分别为0%、11%、18%、25%[14]。因此认为,MLD可作为RP的有效预测参数。美国肿瘤放射治疗协作组织研究发现,肺V20及MLD是重要的剂量学参数[15]。为了使RP控制在20%以下,必须V20≤30%,MLD≤20 Gy[16]。
Vdose虽然能很好地预测RP发生但不准确,因低于某一Vdose阈值者也发生了RP。因为所有的剂量体积直方图剂量-体积参数相互间有很高的相关性,暗示剂量体积直方图形状可能较剂量体积直方图曲线上的单一点在预测RP时更重要。目前NSCLC放疗计划设定中,NCCN指南对于正常肺剂量限制指标有V5、V20、MLD,但在制订治疗计划时,V20 降低,V5 就会升高。单纯考虑V20时,V5、MLD 往往不满意,尤其是V5。因此,在保证肺V20、MLD满足要求的前提下,把V5控制在合适的水平是以后研究的课题。
2联合化疗
2.1同步放化疗同步放化疗中,有些药物增加了正常组织的放射敏感性,同时也增加了并发症的风险。一项Ⅰ期临床试验研究显示,在局部晚期(Ⅲ期)NSCLC放疗同步吉西他滨化疗中,发生3级RP的概率达30%[17]。因此,胸部放疗同步吉西他滨化疗应被禁止。Davie等[18]在肺癌同步放化疗中的一项Meta分析表明,同步卡铂/紫杉醇方案化疗、年龄>65岁的患者,RP的发生率>50%。Taghian等[19]报道,乳腺癌淋巴结阳性患者放疗同步紫杉醇化疗,RP的发生率为19%,建议使用紫杉醇同步化疗时需谨慎。Bentzen等[20]研究显示,在乳腺癌的辅助放疗中,加用他莫昔芬后,发生在腋窝和锁骨上窝区域内的肺纤维化概率成倍增加。考虑可能与他莫昔芬刺激了具有趋化作用的转化生长因子β(transforming growth factor-β,TGF-β)分泌及放疗激活了中性粒细胞、T淋巴细胞、单核细胞和纤维细胞等有关。但也有相反的结论,Formenti等[21]进行了一项Ⅰ~Ⅱ期临床试验,评估了局部晚期乳腺癌放疗同步紫杉醇2周方案化疗,中位随访32个月无RP发生。Azria等[22]也有类似的报道,在乳腺癌放疗同步芳香化酶抑制剂的治疗中未观察到RP的发生。
2.2序贯放化疗放疗后序贯化疗(如蒽环类、吉西他滨、依托泊苷、长春瑞滨、紫杉醇等化疗药)也可见肺炎发生,其肺炎的范围与先前放疗野吻合,这种现象称之为放疗回忆反应[23],文献报道较少。有学者报道[24-25],靶向药物,如舒尼替尼治疗后也有类似情况发生。
2.3同步放化疗与序贯放化疗还有研究表明,RP的发生与化疗的时间顺序有关。Robnett等[26]研究指出,接受根治性同步放化疗肺癌患者与放疗后再行化疗者发生≥3级RP的发生率分别为7%、11%。Gopal等[27]在肺癌研究中也得出了类似的结论,与放疗后接受化疗者相比,同步化疗并没有增加肺功能障碍。但也有学者报道[28],肺癌的同步放化疗与放疗后再行化疗的晚期肺毒性发生率分别为20%和10%,同步化疗增加了晚期肺毒性反应。
Seppenwoolde等[29]综合各方面研究得出结论,同步放化疗比接受单独放疗者RP发生率高,同步放化疗与放疗后再行化疗者RP发生率差异不明显,指出基于肿瘤控制率和长期生存率,应更加提倡同步放化疗。
3肿瘤位置
研究表明,肿瘤位置在RP中起重要作用,当肿瘤位于下肺时,发生RP的风险将增加[30]。这可能是下肺通气功能较好,氧含量丰富,因此下肺照射易发生肺损伤。也由于下肺肿瘤受呼吸运动的影响,需要照射更大范围的正常肺体积的缘故[31]。Yamada等[32]回顾性分析60例接受同步放化疗的肺癌患者,其中28%发生了≥2级RP,其中肺下部组织较中上部组织更易发生RP,其发生率分别为70%和20%。但也有肺下部组织与肺中上组织RP发生率相似的报道[26]。
4辐射防护剂
阿米福汀以能保护正常组织和减少放化疗的不良反应应用于临床。1996年3月,美国食品药品管理局批准用于NSCLC。以后,它被当成很有希望的放射保护剂使用。多个研究证实它能减少RP的发生[33-34]。
5放疗前手术
Zhang等[35]在肺癌的研究中显示,放疗前手术可以减少2级或以上RP的发生。Saynak等[36]在NSCLC术后放疗研究中有类似的报道,放疗前手术似乎未增加RP的风险。他们在分析术后放疗与局部控制率相关性时发现大块肿物切除术后局部复发风险较大。因此,他们建议术后病理结果为N2或切缘不够、阳性或肉眼残留的患者适合术后放疗。对于这类患者,是否可以考虑放疗前手术来减少RP的发生。然而,放疗前手术与发生RP之间的异质性较大,在治疗方案决策方面需综合权衡疗效与并发症的利弊。
6内在放射敏感性
一些患者即使控制在放疗剂量范围内仍可发生RP,提示患者对辐射的敏感性存在个体差异。因为RP至少发生在放疗后1~3个月,因此有些生化指标有可能成为早期预测肺损伤的标志物。
研究显示,放射性肺纤维化和肺泡壁组织结构的破坏与细胞因子(白细胞介素6、10)和TGF-β1有关[37]。权威性研究报道,这些细胞因子与发生急性RP风险有关[35]。研究显示,放疗结束与放疗前的TGF-β1相比,TGF-β1≥1时RP增加[35]。有些研究显示,放疗前TGF-β的水平能预测RP的发生风险,但数据有限[35]。Matsuno等[38]研究表明,发生RP组放疗40 Gy时血清KL-6水平较未发生RP组高,血浆KL-6水平有望成为RP易患性的预测指标。Zhao等[39]报道,无论在放疗前还是在放疗中,发生RP组的血管紧张素转换酶水平均显著低于未发生RP组,提示血管紧张素转换酶可能具有对抗放射性肺损伤和肺纤维化的作用。一项前瞻性研究评估了放射性肺纤维化与生化标志物(IL-6、肿瘤坏死因子α、TGF-β1、白细胞介素10)的相关性,96例ⅠA~ⅢB期NSCLC患者在治疗前和治疗6个月后行多因素分析,结果显示仅有放疗剂量为晚期肺纤维化的独立危险因素[40]。有学者还指出[41],RP也可发生在放射治疗野外,提示RP一开始就可能有免疫因子的参与。总之,这些试验仍处于研究阶段,还未能用于临床,需谨慎应用。
7吸烟
传统上,吸烟被认为是RP的危险因素[42]。然而,最近的一些数据显示吸烟是RP的独立保护因素,考虑可能与吸烟所致的低氧和免疫抑制作用使吸烟患者肺的耐受性增加有关[43]。Takeda等[44]在Ⅲ期NSCLC立体定向放疗中观察到,当吸烟少量时,吸烟是RP的保护因素,当吸烟较多时,吸烟会增加重症RP的发生率。然而,有研究指出[45],由吸烟引起的慢性阻塞性肺病和通气功能障碍等并发症均会使RP危险性增加,建议放疗前检测肺弥散功能以评价肺功能状况。
8性别
性别因素对RP的影响目前尚有争议,很多研究中认为女性较男性更易发生RP,考虑可能与女性患者肺体积较小,在相同的放射野,女性受到的辐射量更大有关[26,46]。也有学者认为,RP是一种超敏反应,类似一种在女性中发病率较高的自身免疫性疾病[26,47]。但Zhang等[35]进行Meta分析后认为,在男女群体中RP发生率比较差异无统计学意义。Dang等[48]认为男性患者更易发生RP。
9患者一般状况
年龄、体质量减轻等与RP相关性研究在不同的文献中报道不一。有效研究显示,年龄大,身体状况较差的患者易发生RP[35]。然而,Zhang等[35]的研究未显示出相关性,考虑可能与入组的患者数量较少有关。研究还显示,放疗前肺功能差(第1秒用力呼气容积<2 L)、合并慢性肺疾病、糖尿病的患者易发生RP[35]。
10结语
放疗是胸部恶性肿瘤最主要的治疗方法之一,提高放疗剂量可以提高肿瘤的局部控制率及总生存时间,RP是制约放疗剂量提高的主要因素[49]。因此,研究RP的相关因素、预测方法、预防手段对制订肺癌患者个体化综合治疗方案具有重要意义。放射性肺损伤系多种因素综合作用的结果,因此在制订治疗方案时需综合权衡肿瘤局部控制率与放射性肺损伤的关系,为临床提供合适的参考指标,优化治疗方案(包括放疗计划)。
参考文献
[1]Clade L,Pérol D,Ginestet C,etal.A prospective on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer:clinical and dosimetric factors analysis[J].Radiother Oncol,2004,71(2):175-181.
[2]Schild SE,Stella PJ,Geyer SM,etal.The outcome of combined modality therapy for stage Ⅲ non-small cell lung cancer in the elderly[J].J Clin Oncol,2003,21(17):3201-3206.
[3]Emami B,Lyman J,Brown A,etal.Tolerance of normal tissue to therapeutic irradiation[J].Int J Radiat Oncol Biol Phys,1991,21 (1):109-122.
[4]Graham MV,Purdy JA,Emami B,etal.Clinical dose- volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC)[J].Int J Radiat Oncol Biol Phys,1999,45(2):323-329.
[5]Tsujino K,Hirota S,Kotani Y,etal.Radiation pneumonitis following concurrent accelerated hyperfractionated radiotherapy and chemotherapy for limited-stage small-cell lung cancer:dose-volume histogram analysis and comparison with conventional chemoradiation[J].Int J Radiat Oncol Biol Phys,2006,64(4):1100-1105.
[6]Hernando ML,Marks LB,Bentel GC,etal.Radiation-induced pulmonary toxicity:a dose-volume histogram analysis in 201 patients with lung cancer[J].Int J Radiat Oncol Biol Phys,2001,51(3):650-659.
[7]Marks LB,Spencer DP,Sherouse GW,etal.The role of three dimensional functional lung imaging in radiation treatment planning:the functional dose-volume histogram[J].Int J Radiat Oncol Biol Phys,1995,33(1):65-75.
[8]Matsuo Y,Shibuya K,Nakamura M,etal.Dose-volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer[J].Int J Radiat Oncol Biol Phys,2012,83(4):545-549.
[9]Murshed H,Liu HH,Liao Z,etal.Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced-stage non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2004,58(4):1258-1267.
[10]Seppenwoolde Y,Lebesque JV,De Jaeger K,etal.Comparing different NTCP models that predict the incidence of radiation pneumonitis.Normal tissue complication probability[J].Int J Radiat Oncol Biol Phys,2003,55(3):724-735.
[11]Wang S,Liao Z,Vaporciyan AA,etal.Investigation of clinical and dosimetric factors associated with postoperative pulmonary complications in esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery[J].Int J Radiat Oncol Biol Phys,2006,64(3):692-699.
[12]王静,王平,庞青松,等.非小细胞肺癌三维适形放疗放射性肺损伤临床及剂量学因素分析[J].中华放射肿瘤学杂志,2009,18(6):448-451.
[13]Yorke ED,Jackson A,Rosenzweig KE,etal.Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study[J].Int J Radiat Oncol Biol Phys,2005,63(3):672-682.
[14]Kwa SL,Lebesque JV,Theuws JC,etal.Radiation pneumonitis as a function of mean lung dose:an analysis of pooled data of 540 patients[J].Int J Radiat Oncol Biol Phys,1998,42(1):1-9.
[15]Graham MV.Predicting radiation response[J].Int J Radiat Oncol Biol Phys,1997,39(3):561-562.
[16]Marks LB,Bentzen SM,Deasy JO,etal.Radiation Dose-Volume Effects in the Lung[J].Int J Radiat Oncol Biol Phys,2010,76(3 Suppl):S70-76.
[17]Blackstock AW,Ho C,Butler J,etal.Phase Ⅰa/Ⅰb chemo-radiation trial of gemcitabine and dose-escalated thoracic radiation in patients with stage ⅢA/B non-small cell lung cancer[J].J Thorac Oncol,2006,1(5):434-440.
[18]Davie A,Robert B,Jeffrey D,etal.Predicting radiation pneumonitis after chemoradiation therapy for lung cancer:an international individual patient data meta-analysis[J].Int J Radiation Oncology Biology Physics,2012,4(29):1-7.
[19]Taghian AG,Assaad SI,Niemierko A,etal.Is a reduction in radiation lung volume and dose necessary with paclitaxel chemotherapy for node-positive breast cancer?[J].Int J Radiat Oncol Biol Phys,2005,62(2):386-391.
[20]Bentzen SM,Skoczylas JZ,Overgaard M,etal.Radiotherapy-related lung fibrosis enhanced by tamoxifen[J].J Natl Cancer Inst,1996,88(13):918-922.
[21]Formenti SC,Volm M,Skinner KA,etal.Preoperative twice-weekly paclitaxel with concurrent radiation therapy followed by surgery and postoperative doxorubicin-based chemotherapy in locally advanced breast cancer:a phase Ⅰ/Ⅱ trial[J].J Clin Oncol,2003,21(5):864-870.
[22]Azria D,Belkacemi Y,Romieu G,etal.Concurrent or sequential adjuvant letrozole and radiotherapy after conservative surgery for early-stage breast cancer (CO-HO-RT):a phase 2 randomised trial[J].Lancet Oncol,2010,11(3):258-265.
[23]Ding X,Ji W,Li J,etal.Radiation recall pneumonitis induced by chemotherapy after thoracic radiotherapy for lung cancer[J].Radiat Oncol,2011,6(6):24.
[24]Seidel C,Janssen S,Karstens JH,etal.Recall pneumonitis during systemic treatment with sunitinib[J].Ann Oncol,2010,21(10):2119-2120.
[25]Levy A,Hollebecque A,Bourgier C,etal.Targeted therapy-induced radiation recall[J].Eur J Cancer,2013,49(7):1662-1668.
[26]Robnett TJ,Machtay M,Vines EF,etal.Factors predicting severe radiation pneumonitis in patients receiving definitive chemoradiation for lung cancer[J].Int J Radiat Oncol Biol Phys,2000,48(1):89-94.
[27]Gopal R,Starkschall Y,Tucker SL,etal.Effects of radiotherapy and chemotherapy on lung function in patients with non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2003,56(1):114-120.
[28]Byhar RW,Scott C,Sause WT,etal.Response,toxicity,failure patterns,and suvival in five radiation therapy oncology group (RTOG)trials of sequential and/or concurrent chemotherapy and radiotherapy for locally advanced non-small cell carcinoma of the lung[J].Int J Radiat Oncol Biol Phys,1998,42(3):469-478.
[29]Seppenwoolde Y,De Jaeger K,Lebeque JV,etal.Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer[J].Int J Radiat Oncol Biol Phys,2003,56(4):1208-1209.
[30]Hope AJ,Lindsay PE,El Naqa I,etal.Modeling radiation pneumonitis risk with clinical,dosimetric,and spatial parameters[J].Int J Radiat Oncol Biol Phys,2006,65(1):112-124.
[31]Byhardt RW,Martin L,Pajak TF,etal.The influence of field size and other treatment factors on pulmonary toxicity following hyperfractionated irradiation for inoperable non-small cell lung cancer (NSCLC)-analysis of a Radiation Therapy Oncology Group (RTOG) protocol[J].Int J Radiat Oncol Biol Phys,1993,27(3):537-544.
[32]Yamada M,Kudoh S,Hirata K,etal.Risk factors of pneumonitis following chemoradiotherapy for lung cancer[J].Eur J Cancer,1998,34(1):71-75.
[33]Choi NC.Radioprotective effect of amifostine in radiation pneumonitis[J].Semin Oncol,2003,30(6 Suppl 18):10-17.
[34]Mehta V.Open label multicenter trial of subcutaneous amifostine (Ethyol) in the prevention of radiation induced esophagitis and pneumonitis in patients with measurable,unresectable non-small cell lung cancer[J].Semin Oncol,2004,31(6 Suppl 18):42-46.
[35]Zhang XJ,Sun JG,Sun J,etal.Prediction of radiation pneumonitis in lung cancer patients:a systematic review[J].J Cancer Res Clin Oncol,2012,7(27):1284-1281.
[36]Saynak M,Higginson DS,Morris DE,etal.Current status of postoperative radiation for non-small-cell lung cancer[J].Semin Radiat Oncol,2010,20(3):192-200.
[37]Chen Y,Rubin P,Williams J,etal.Circulating IL-6 as a predictor of radiation pneumonitis[J].Int J Radiat Oncol Biol Phys,2001,49(3):641-648.
[38]Matsuno Y,Satoh H,Ishikawa H,etal.Simultaneous measurements of KL-6 and SP-D in patients undergoing thoracic radiotherapy[J].Med Oncol,2006,23(1):75-82.
[39]Zhao L,Wang L,Ji W,etal.Association between plasma angiotensin-converting enzyme level and radiation pneumonitis[J].Cytokine,2007,37(1):71-75.
[40]Mazeron R,Etienne-Mastroianni B,Pérol D,etal.Predictive factors of late radiation fibrosis:a prospective study in non-small cell lung cancer[J].Int J Radiat Oncol Biol Phys,2010,77(1):38-43.
[41]Larici AR,Del Ciello A,Maggi F,etal.Lung abnormalities at multimodality imaging after radiation therapy for non-small cell lung cancer[J].Radiographics,2011,31(3):771-789.
[42]Monson JM,Stark P,Reilly JJ,etal.Clinical radiation pneumonitis and radiographic changes after thoracic radiation therapy for lung carcinoma[J].Cancer,1998,82(5):842-850.
[43]Jin H,Tucker SL,Liu HH,etal.Dose-volume thresholds and smoking status for the risk of treatment-related pneumonitis in inoperable non-small cell lung cancer treated with definitive radiotherapy[J].Radiother Oncol,2009,91(3):427-432.
[44]Takeda A,Kunieda E,Ohashi T,etal.Severe COPD is correlated with mild radiation pneumonitis following stereotactic body radiotherapy[J].Chest,2012,141(4):858-866.
[45]Lopez Guerra JL,Gomez D,Zhuang Y,etal.Change in diffusing capacity after radiation as an objective measure for grading radiation pneumonitis in patients treated for non-small-cell lung cancer[J].Int J Radiat Oncol Biol Phys,2012,83(5):1573-
1579.
[46]Kong FM,Griffith KA,Hayman JA,etal.Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer(NSCLC):predictors for radiation pneumonitis and fibrosis[J].Int J Radiat Oncol Binol Phys,2006,65(4):1075-1086.
[47]Morgan GW,Breit SN.Radiation and the lung:a reevaluation of the mechanisms mediating pulmonary injury[J].Int J Radiat Oncol Biol Phys,1995,31(2):361-369.
[48]Dang J,Li G,Lu X,etal.Analysis of related factors associated with radiation pneumonitis in patients with locally advanced non-small-cell lung cancer treated with three-dimensional conformal radiotherapy[J].J Cancer Res Clin Oncol,2010,136(8):1169-1178.
[49]Wang L,Correa CR,Zhao L,etal.The effect of radiation dose and chemotherapy on overall survival in 237 patients with Stage Ⅲ non-small-cell lung Cancer[J].Int J Radiat Oncol Biol Phys,2009,73(5):1383-1390.
The Research Progress of Related Factors for the Radiation PneumonitisJIANGJun1,TUYu2.(1.RadiotherapyDepartmentofTumorCenter,FoshanFirstPeople′sHosptial,Foshan528000,China; 2.RadiologicalMedicineandPublicHealthInstituteofMedicalCollegeofSuzhouUniversity,Suzhou215006,China)
Abstract:Although radiation therapy technology has made a revolutionary progress,such as intensity-modulated radiation therapy,image-guided radiation therapy,volumetric modulated arc radiotherapy,etc.,but incidence of the radiation pneumonitis(RP) remains high.RP often cannot be reversed and there is no specific treatment,and it will have a serious impact on the patient′s quality of life.Therefore,it is particularly important to timely prevent and reduce the occurrence of RP.The incidence of RP is closely related to the following risk factors,including some dosage-volume parameter,dosage combined chemotherapy or amifostine,pre-RT surgery,tumor location at middle lower lung,cytokines(Interleukin 6 and 10),transforming growth factor β1(TGF-β1),KL-6,angiotensin converting enzyme,smoking history,existence of chronic lung disease,low pre-RT pulmonary function,diabetes and so on.
Key words:Radiation pneumonitis; Dosage-volume histogram; Risk factors; Chemotherapy; Cytokines; Smoking
收稿日期:2015-01-06修回日期:2015-04-28编辑:伊姗
doi:10.3969/j.issn.1006-2084.2015.20.029
中图分类号:R730.6
文献标识码:A
文章编号:1006-2084(2015)20-3723-04