具有分布时滞脉冲Cohen-Grossberg神经网络的稳定性分析

2015-12-07 02:53苏亚坤
关键词:时滞时刻脉冲

张 韬,苏亚坤,朱 进

(渤海大学 数理学院,辽宁锦州 121000)

Cohen-Grossberg神经网络是由Cohen和Crossberg于1983年提出的[1],被广泛地应用于模式识别、记忆与信号处理、图象处理与计算技术等领域。然而,在实际应用中时滞、脉冲是不可避免的,且时滞、脉冲对神经网络的稳定性有着巨大的影响[2-8],因此有关时滞脉冲Cohen-Crossberg神经网络的研究[9-19]已逐渐引起人们的关注,研究脉冲型时滞神经网络具有极其重要的意义。

1 问题描述及相关假设

神经网络模型如下:

初始条件x(t0+s)=φ(s),0≤τij(t)<τij(t)≤η<1,其中:x(t)=(x1(t),x2(t),…,xn(t))表示神经元状态向量;ai(·)表示放大函数;bi(·)表示适当的行为函数;fj,hj为神经元的激励函数;C=(cij)n×n,D=(dij)n×n,W=(wij)n×n分别表示连接权矩阵、时滞连接权矩阵和分布时滞连接权矩阵。固定时刻tk满足t1<t2<t3<…,且在 tk时刻,Δ x(t )Rn」表示在tk时刻的状态变化,对所有的k∈N,Ik(0)=0。

要求神经网络模型满足以下假设:

1)存在正常数 Lj,Hj,j=1,2,…,n 使得

4)∃σk≥0,k∈N,有

5)∃μ >1,有 μτ≤inf{tk-tk-1};

6)max{ θk}≤M < e2λμτ,M 是常数,θk=1+(2σk+);

7)延迟核函数 Kij,i,j=1,2…n是定义在[0,∞)上的实值非负函数,满足,其中λ是正常数。

2 主要结果

定理 在假设1)~7)下,如果∃λ>0,正对角矩阵Q=diag(q1,…,qn),使得

其中

那么模型(1)的零解是全局指数稳定的。

证明 构造如下Lyapunov-Krasovskii泛函:

当 t≠tk时

利用条件1)~3)和2ab≤a2+b2得

由V'<0 知函数 V(t,x(t))是单调递减的,有 V(t,x(t))≤V(t0,x(t0)),

又因为

当t=tk时,根据假设4)~6)和指数稳定定义,有

由模型的任意解x(t,t0,x0)可得

由于μτ≤inf{tk-tk-1},μτ≤t1-t0,μτ≤t2-t1,…,μτ≤tk-1-tk-2,求和得 (k-1)μτ≤t1-t0+t2-t1+…

3 数值算例

考虑下面的系统

其中 a1(x1(t))=3+sinx1(t),a2(x2(t))=4+cosx1(t)。

[1]Cohen M A,Grossberg S.Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J].IEEE Trans Syst Man Cybern,1983,13(5):815-826.

[2]Liao X,Li C.Global attractivity of Cohen-Grossberg model with finite and infinite delays[J].Math Anal Appl,2006,315(1):244-262.

[3]Huang T,Chan A,Huang Y,et al.Stability of Cohen-Grossberg neural networks with time varying delays[J].Neural Networks,2007,20(8):868-873.

[4]Li T,Fei S.Stability analysis of Cohen-Grosserg neural networks with timevarying and distributed delays[J].Neurocomputing,2008,71:1069-1081.

[5]Li K.Stability analysis for impulsive Cohen-Grossberg neural networks with time-varying delays and distributed delay[J].Nonlinear Anal Real World Appl,2009,10(5):2784-2798.

[6]Zheng C D,Shan Q H,Wang Z.Novel stability criteria of Cohen-Grossberg neural networks with time-varying delays[J].Int J Circuit Theory Appl,2012,40(3):221-235.

[7]Huang C X,Huang L H,He Y G.Mean square exponential stability of stochastic Cohen-Grossberg neural networks with unbounded distributed delays[J].Discrete Dynamics in Nature and Society,2010(20):1-15.

[8]Wan L,Zhou Q.Exponential stability of stochastic reaction diffusion Cohen-Grossberg neural networks with delays[J].Applied Mathematics and Computation,2008,206(2):818-824.

[9]Chen Y.Global Asymptotic Stability of Delayed Cohen-Grossberg Neural Networks[J].IEEE Transactions on Circuit and Systems-I:Fundamental Theory and Applications,2006,53(2):351-357.

[10]Yang Z C,Xu D Y.Impulsive effects on stability of Cohen-Grossberg neural nettworks with variable delays[J].Applied Mathematics and Cumputation,2006,177(1):63-78.

[11]Bai C Z.Stability analysis of Cohen-Grossberg BAM neural networks with delays and impulses[J].Chaos,Solitons and Fractals,2008,35(2):263-267.

[12]Ping Z W,Lu J G.Global exponential stability of impulsive Cohen-Grossberg neural networks with continuously distributed delays[J].Chaos,Solitons and Fractals,2009,41(1):164-174.

[13]Luo W P,Zhong S M,Yang J.Global exponential stability of impulsive Cohen-Grossberg neural networks with delays[J].Chaos,Solitons and Fractals,2009,42(2):1084-1091.

[14]Li K L.Stability analysis for impulsive Cohen Grossberg neural networks with time varying delays and distributed delays[J].Nonlinear Analysis:Real World Applications,2009,10(5):2784-2798.

[15]Lou X Y,Cui B T.Global exponential stability analysis of delayed Cohen-Grossberg neural networks with distributed delay[J].International Journal of Systems Science,2007,38(7):601-609.

[16]Song Q K,Cao J D.Robust Stability in Cohen Grossberg Neural Network with both Time Varying and Distributed Delays[J].Neural Process Lett,2008,27(2):179-196.

[17]Wang B X,Jian J G,Jiang M H.Stability in Lagrange sense for Cohen-Grossberg neural networks with time-varying delays and finite distributed delays[J].Nonlinear AnaIysis:Hybrid Systems,2010,4(1):65-78.

[18]Wu W,Cui B T,Lou X Y.Global exponential stability of Cohen-Grossberg neural networks with distributed delays[J].Mathematical and Computer Modelling,2008,47(9):868-873.

[19]Lu K,Xu D,Yang Z.Global attraction and stability for Cohen-Grossberg neural networks with delays[J].Neural Networks,2006,19(10):1538-1549.

猜你喜欢
时滞时刻脉冲
脉冲离散Ginzburg-Landau方程组的统计解及其极限行为
冬“傲”时刻
捕猎时刻
带有时滞项的复Ginzburg-Landau方程的拉回吸引子
上下解反向的脉冲微分包含解的存在性
针对输入时滞的桥式起重机鲁棒控制
不确定时滞奇异摄动系统的最优故障估计
黄芩苷脉冲片的制备
一天的时刻
离散时滞网络控制系统的镇定研究