陈敬忠
【摘 要】数学思想方法是对数学的知识内容和所使用方法的本质的认识,它是从某些具体数学认识过程中提炼出来的对数学规律的理性认识。数学知识与数学思想方法是辨证统一的,学生通过数学学习,形成一定的数学思想方法,这应该是数学课程的一个重要目的。数学思维可以体现在很多方面,综合而言这是学生应当具备的一种思辨能力以及对于知识的综合应用能力。数学教学的思维训练,是根据学生的思维特点,结合教学内容在教学过程中实现的。课堂教学是对学生进行思维训练的主阵地,所以,要把思维训练贯穿于数学教学的各个方面。
【关键词】小学数学;教学;数学思想
数学思想方法在当今社会的重要性日益显现,在小学数学教学中有意识地渗透一些基本的数学思想方法,能使学生感知数学的价值,学会用数学的眼光去思考和解决问题,还可以把学生数学知识的学习、数学能力的培养、个体智力的发展有机地结合起来,这也符合课程标准的思想。数学思想是对数学知识、方法的本质和规律的理性认识,它是数学思维的结晶和概括,是解决数学问题的灵魂和根本策略。教学中,我们不仅要重视知识的形成过程,更要注重发掘在数学知识发生、形成、发展过中所蕴藏的数学思想和数学方法。如何让学生在学会知识的同时,又学会数学思想方法,一直是众多教师探究的重要课题。为此,笔者谈几点体会。
一、精心设计问题,渗透“化归思想”
小学生的独立性较差,他们不善于组织自己的思维活动,往往是看到什么就想到什么。培养学生逻辑思维能力,主要是在教学过程中通过教师示范、引导、指导,潜移默化地使学生获得一些思维的方法。教师在教学过程中精心设计问题,提出一些富有启发性的问题,激发思维,最大限度地调动学生的积极性和主动性。例如:小玲做了7个五角星,小云做了8个五角星,她们送给幼儿园的小朋友们10个五角星,还剩几个?解:具体可设计这样一些问题:“这道题告诉了我们哪些条件?”“知道小玲做7个,小云做了8个,可以求出什么?”“又知道送给幼儿园小朋友10个,可以求出什么?”“那么这道题先算什么,后算什么?”学生的思维能力只有在思维的活跃状态中,才能得到有效的发展。在教学过程中,教师应根据教材重点和学生的实际提出深浅适度,具有思考性的问题,这样就将每位学生的思维活动都激活起来,通过正确的思维方法,掌握新学习的知识。“化归思想”,也称“转化思想”,它是小学数学中最关键的数学思想之一,它往往根据学生已有的经验,通过观察、推想、类比等手段,把一个实际问题通过某种转化,归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题,直至转化为已经解决或容易解决的问题。其基本形式有化生为熟、化难为易、化繁为简、化整为零、化未知为已知、化一般为特殊、化抽象为具体等。给学生渗透这种思想,有利于提高学生的逻辑思维能力。比如,在教学平面图形的面积计算中,就以化归思想、转化思想等为理论依据,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生对面积计算的认知结构。小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等等。这些知识的学习都渗透着化归思想。
二、培养学生的语言表达能力,促进学生思维发展
思维和语言是密切联系着的。语言是思维的“外壳”,思维是语言的“内核”,思维决定着语言的表达。反过来,语言又促进思维的发展,使思维更富有条理,两者相互依存。小学生数学思维的形成与发展是借助语言来实现的,发展学生的思维,必须相应地发展学生的语言。首先,教师要努力做到数学语言应用的目的性、科学性、逻辑性、规范性、启发性。教学中,教师要考虑小学生的语言特点,用生动有趣的语言,拨动学生的心弦,激活学生的思维。其次,教师要给学生充分提供语言训练的机会,培养学生用确切的、完整的、简练的、清晰的语言来表达思维的结果,做到思维与语言表达的统一。要经常让学生亲自动笔、动口、动手,将数学语言的准确性、严密性、逻辑性、示范性挂在学生口中,印在学生脑中,让学生“手上会做”、“脑中会想”、“嘴上会说”,使学生的思维向深层次发展。学生在回答问题时,教师不能只要求意思答对就行,还应要求学生把在感知事物过程中所进行的比较、分析、综合、抽象、概括、判断、推理等思维过程表达清楚,力求精炼明了地说明问题。这样不仅培养了学生语言的表达能力,更有利于训练学生的思维能力。因此,在数学教学过程中,教师要重视提高学生的语言表达能力,促进学生思维的发展。
三、设计练习,培养学生创造思维
培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。()”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。通过多种练习形式,不仅有助于加深理解所学的数学知识,而且有助于发展学生思维的灵活性,并激发学生思考问题的兴趣。例如,讲过乘法分配律,除了像课本中的练习题,给出两个数相加再乘以一个数,要求学生应用运算定律写出与它相等的式子以外,还可以给出一些等式,其中有的不符合乘法分配律,让学生判断那个是错误的;或者用3种图形代替具体的数,写成两个式子,如(○+△)×□和○×□+□×△,让学生判断它们是不是相等,并说明根据。这些练习都有助于培养学生演绎推理的能力。设计一些有不同解法和有多个答案的练习题,对于发展学生思维的灵活性和创造性有很大益处。但是,做有不同解法的练习题时,不宜让学生片面追求解法的数量,而要引导学生运用不同的思路,或运用不同的知识去解决,并且要找出简便的解法。设计的练习题的难度要适当,要是大多数学生经过努力思考运用所学知识能够正确解答出来的。在教学中为了发展学生思维,往往出一些超过大纲课本范围的题目,这样不仅会增加学生负担,而且由于难度太大,不利于激发学生学习兴趣,也不能有效地发展学生的逻辑思维和思维的灵活性。endprint