关于平方型Altman映象的公共不动点定理

2015-12-02 03:14张树义赵美娜
服装学报 2015年4期
关键词:不动点方程组师范大学

张树义, 赵美娜, 李 丹

(渤海大学数理学院,辽宁 锦州121013)

1 引言与预备知识

Altman型映象不动点存在性的研究,始于1975年。Altman证明了完备度量空间(X,d)中一个映象S不动点的存在性:

其中∀x,y∈X,Q为从[0,+∞)到自身的递增函数且满足:

Ⅰ)0 <Q(t)<t,t∈(0,+∞);

Ⅱ)函数p(t)=t/(t-Q(t))递减;

此后,Altman型映象的不动点定理有了进一步的改进和推广。在Altman型映象不动点问题的研究中,已往的都是讨论不带平方Altman型映象不动点的存在性[1-7]。最近,栾丹等[8]讨论了一类平方型Altman映象公共不动点的存在性。

文中在此基础上建立一类新的更广泛的平方型Altman映象公共不动点定理,所得结果改进和推广了文献[8]中的结果。张树义等[9]给出了一类Φ-压缩映象公共不动点的存在性。文献[10-16]利用不动点定理,讨论了起源于动态规划的几类泛函方程组解的存在性和唯一性。受此启发,作为应用文中还讨论了一类泛函方程组解的存在与唯一性。

文中设S,A,T,B是X上的4个自映象,Z+为非负整数集。

注1 由条件Ⅰ)及Q的递增性可知:Q(0)=0且Q(t)=t⇔t=0。

2 主要结果

[1]Altman M.A fixed point theorem in compact metric spaces[J].Amer Math Monthly,1975,82(8):827-829.

[2]Garbone A,Singh S P.Common fixed point theorem for Altman type mappings[J].Indian J Pure Appl Math,1987,18(12):1082-1087.

[3]刘泽庆.关于Altman型映象的公共不动点定理[J].辽宁师范大学学报:自然科学版,1993,16(1):1-4.LIU Zeqing.On common fixed points of Altman type mappings[J].Journal of Liaoning Normal University:Natural Science Edition,1993,16(1):1-4.(in Chinese)

[4]张树义.Altman型映象的公共不动点定理[J].烟台师范学院学报:自然科学版,2000,16(2):95-97.ZHANG Shuyi.Common fixed point theorem of Altman type mappings[J].Journal of Yantai Normal University:Natural Science Edition,2000,16(2):95-97.(in Chinese)

[5]谷峰,邓波.关于Altman型映象的公共不动点[J].哈尔滨师范大学学报:自然科学版,2001,17(5):44-46.GU Feng,DENG Bo.Common fixed point for Altman type mappings[J].Journal of Harbin Normal University::Natural Science Edition,2001,17(5):44-46.(in Chinese)

[6]董清平,谷峰.广义拟弱交换映象的公共不动点定理[J].杭州师范大学学报:自然科学版,2008,7(1):21-23.DONG Qingping,GU Feng.Common fixed point theorems for generalized quasi weak commutativity mapping[J].Journal of Hangzhou Normal University:Natural Science Edition,2008,7(1):21-23.(in Chinese)

[7]张树义,衣立红,邵颖.Altman型映象的公共不动点[J].杭州师范大学学报:自然科学版,2008,7(6):401-404.ZHANG Shuyi,YI Lihong,SHAO Ying.Common fixed point for Altman type mappings[J].Journal of Hangzhou Normal University:Natural Science Edition,2008,7(6):401-404.(in Chinese)

[8]栾丹,宋晓光.一类平方型Altman映象的公共不动点定理[J].渤海大学学报:自然科学版,2014,35(2):111-113.LUAN Dan,SONG Xiaoguang.Common fixed point for a class of twice power type Altman mapping[J].Journal of Bohai University:Natural Science Edition,2014,35(2):111-113.(in Chinese)

[9]张树义,宋晓光.Φ-压缩映象的公共不动点定理[J].北华大学学报:自然科学版,2014,15(2):167-173.ZHANG Shuyi,SONG Xiaoguang.Common fixed point for Φ-contraction mapping[J].Journal of Beihua University:Natural Science Edition,2014,15(2):167-173.(in Chinese)

[10]HUANG N J,Lee B S,KANG M K.Fixed point theorems for compatible mappings with applications to the solutions of functional equations arising in dynamic programmings[J].Int J Math and Math Sci,1997,20(4):673-680.

[11]LIU Z Q,GUO Z Y,KANG S M,et al.A fixed point theorem and its application in dynamic programming[J].Int J App Math Sci,2006,3(1):11-19.

[12]Navshinde S,Achari J.Common fixed point of commuting mappings with application to dynamic programming[J].Int J Contemp Math Sci,2010,5(43):2111-2121.

[13]CAI T,CHEN L,LIU Z Q,et al.A common fixed point theorem fot two pairs of compatible mappings and its applications[J].Int J Pure and App Math,2008,44(3):385-397.

[14]LIU Z Q.Compatible mappings and fixed points[J].Acta Sci Math,1999,65:371-383.

[15]WEI Li,KANG S M.A common fixed point theorem fot compatible mappings with application to functional equations arising in dynamic programming[J].Fixed Point Theory and Applictions,2003(5):155-161.

[16]Pathak H K,CHO Y J,KANG S M,et al.Fixed point theorems for compatible mappings of type(P)and applications to dynamic programming[J].Le Matematiche,1995,50(1):15-33.

[17]Jungck G.Compatible mappings and common fixed points[J].Internat J math and Math Sci,1986,9(4):771-779.

[18]刘立山.(次)相容映象公共不动点定理与广义Ishikawa迭代逼近定理[J].曲阜师范大学学报:自然科学版,1990,16(2):40-44.LIU Lishan.Common fixed points theorems of(sub)compatible mappings and generalized Ishikawa iterative approximation theorems[J].Journal of Qufu Normal University:Natural Science Edition,1990,16(2):40-44.(in Chinese)

猜你喜欢
不动点方程组师范大学
深入学习“二元一次方程组”
《二元一次方程组》巩固练习
一类抽象二元非线性算子的不动点的存在性与唯一性
一类次临界Bose-Einstein凝聚型方程组的渐近收敛行为和相位分离
活用“不动点”解决几类数学问题
Study on the harmony between human and nature in Walden
Balance of Trade Between China and India
Courses on National Pakistan culture in Honder College
Film Music and its Effects in Film Appreciation
不动点集HP1(2m)∪HP2(2m)∪HP(2n+1) 的对合