张树义, 赵美娜, 李 丹
(渤海大学数理学院,辽宁 锦州121013)
Altman型映象不动点存在性的研究,始于1975年。Altman证明了完备度量空间(X,d)中一个映象S不动点的存在性:
其中∀x,y∈X,Q为从[0,+∞)到自身的递增函数且满足:
Ⅰ)0 <Q(t)<t,t∈(0,+∞);
Ⅱ)函数p(t)=t/(t-Q(t))递减;
此后,Altman型映象的不动点定理有了进一步的改进和推广。在Altman型映象不动点问题的研究中,已往的都是讨论不带平方Altman型映象不动点的存在性[1-7]。最近,栾丹等[8]讨论了一类平方型Altman映象公共不动点的存在性。
文中在此基础上建立一类新的更广泛的平方型Altman映象公共不动点定理,所得结果改进和推广了文献[8]中的结果。张树义等[9]给出了一类Φ-压缩映象公共不动点的存在性。文献[10-16]利用不动点定理,讨论了起源于动态规划的几类泛函方程组解的存在性和唯一性。受此启发,作为应用文中还讨论了一类泛函方程组解的存在与唯一性。
文中设S,A,T,B是X上的4个自映象,Z+为非负整数集。
注1 由条件Ⅰ)及Q的递增性可知:Q(0)=0且Q(t)=t⇔t=0。
[1]Altman M.A fixed point theorem in compact metric spaces[J].Amer Math Monthly,1975,82(8):827-829.
[2]Garbone A,Singh S P.Common fixed point theorem for Altman type mappings[J].Indian J Pure Appl Math,1987,18(12):1082-1087.
[3]刘泽庆.关于Altman型映象的公共不动点定理[J].辽宁师范大学学报:自然科学版,1993,16(1):1-4.LIU Zeqing.On common fixed points of Altman type mappings[J].Journal of Liaoning Normal University:Natural Science Edition,1993,16(1):1-4.(in Chinese)
[4]张树义.Altman型映象的公共不动点定理[J].烟台师范学院学报:自然科学版,2000,16(2):95-97.ZHANG Shuyi.Common fixed point theorem of Altman type mappings[J].Journal of Yantai Normal University:Natural Science Edition,2000,16(2):95-97.(in Chinese)
[5]谷峰,邓波.关于Altman型映象的公共不动点[J].哈尔滨师范大学学报:自然科学版,2001,17(5):44-46.GU Feng,DENG Bo.Common fixed point for Altman type mappings[J].Journal of Harbin Normal University::Natural Science Edition,2001,17(5):44-46.(in Chinese)
[6]董清平,谷峰.广义拟弱交换映象的公共不动点定理[J].杭州师范大学学报:自然科学版,2008,7(1):21-23.DONG Qingping,GU Feng.Common fixed point theorems for generalized quasi weak commutativity mapping[J].Journal of Hangzhou Normal University:Natural Science Edition,2008,7(1):21-23.(in Chinese)
[7]张树义,衣立红,邵颖.Altman型映象的公共不动点[J].杭州师范大学学报:自然科学版,2008,7(6):401-404.ZHANG Shuyi,YI Lihong,SHAO Ying.Common fixed point for Altman type mappings[J].Journal of Hangzhou Normal University:Natural Science Edition,2008,7(6):401-404.(in Chinese)
[8]栾丹,宋晓光.一类平方型Altman映象的公共不动点定理[J].渤海大学学报:自然科学版,2014,35(2):111-113.LUAN Dan,SONG Xiaoguang.Common fixed point for a class of twice power type Altman mapping[J].Journal of Bohai University:Natural Science Edition,2014,35(2):111-113.(in Chinese)
[9]张树义,宋晓光.Φ-压缩映象的公共不动点定理[J].北华大学学报:自然科学版,2014,15(2):167-173.ZHANG Shuyi,SONG Xiaoguang.Common fixed point for Φ-contraction mapping[J].Journal of Beihua University:Natural Science Edition,2014,15(2):167-173.(in Chinese)
[10]HUANG N J,Lee B S,KANG M K.Fixed point theorems for compatible mappings with applications to the solutions of functional equations arising in dynamic programmings[J].Int J Math and Math Sci,1997,20(4):673-680.
[11]LIU Z Q,GUO Z Y,KANG S M,et al.A fixed point theorem and its application in dynamic programming[J].Int J App Math Sci,2006,3(1):11-19.
[12]Navshinde S,Achari J.Common fixed point of commuting mappings with application to dynamic programming[J].Int J Contemp Math Sci,2010,5(43):2111-2121.
[13]CAI T,CHEN L,LIU Z Q,et al.A common fixed point theorem fot two pairs of compatible mappings and its applications[J].Int J Pure and App Math,2008,44(3):385-397.
[14]LIU Z Q.Compatible mappings and fixed points[J].Acta Sci Math,1999,65:371-383.
[15]WEI Li,KANG S M.A common fixed point theorem fot compatible mappings with application to functional equations arising in dynamic programming[J].Fixed Point Theory and Applictions,2003(5):155-161.
[16]Pathak H K,CHO Y J,KANG S M,et al.Fixed point theorems for compatible mappings of type(P)and applications to dynamic programming[J].Le Matematiche,1995,50(1):15-33.
[17]Jungck G.Compatible mappings and common fixed points[J].Internat J math and Math Sci,1986,9(4):771-779.
[18]刘立山.(次)相容映象公共不动点定理与广义Ishikawa迭代逼近定理[J].曲阜师范大学学报:自然科学版,1990,16(2):40-44.LIU Lishan.Common fixed points theorems of(sub)compatible mappings and generalized Ishikawa iterative approximation theorems[J].Journal of Qufu Normal University:Natural Science Edition,1990,16(2):40-44.(in Chinese)