程益民,鲍家馨,谢建武
(1.浙江师范大学化学与生命科学学院,浙江金华321004;2.浙江省东阳市金鑫化学工业有限公司,浙江金华322100)
精细化工
基于新型的溴代试剂合成螺二氢呋喃衍生物
程益民1,2,鲍家馨1,谢建武1
(1.浙江师范大学化学与生命科学学院,浙江金华321004;2.浙江省东阳市金鑫化学工业有限公司,浙江金华322100)
在温和的条件下,以-溴代丙二酸二乙酯、三乙胺为溴代试剂和碱为原料,高效合成了螺二氢呋喃衍生物,并获得了较好的收率(68%~91%)。该类化合通过核磁共振及单晶衍射(X-Ray)确定了结构,并对反应机理进行了推测。
二氢呋喃衍生物;溴代试剂;-溴代丙二酸二乙酯;环化反应
众所周知,羰基α位的溴代一般是用NBS(溴代丁二酰亚胺)或者液溴作为溴代试剂[1]。由于溴单质具有一定的危险性,所以其应用受到了一定的限制[2]。NBS由于反应条件温和、使用方便,一直以来被当作溴单质的替代品[3]。但是由于NBS具有一定的氧化性,如可以将很多二级醇氧化成酮[4],所以在一些反应中会增加副反应。多取代的二氢呋喃类衍生物广泛的存在于天然产物当中,具有重要的生物活性[5]。特别是,螺二氢呋喃类衍生物被报道有各种各样的药物活性[6],由于其在有机合成中的重要应用,其合成方法被人们广泛研究[7]。本文研究发现溴代-1,3-二羰基化合物(1a~1b)可以作为一种新型的溴代试剂,并且将其成功的应用于螺二氢呋喃类衍生物合成,该反应条件温和、使用方便、产率较高。
将化合物3a(36.8 mg/0.1 mmol)和TEA(14 μL/0.1 mmol)加入1 mL氯仿中,搅拌下加入1b(26 μL/0.15 mmol)。常温搅拌,TLC跟踪反应,反应完全后柱层析分离(石油醚:乙酸乙酯=6:1)得到目标产物。
化合物3a1H NMR(400 MHz,CDCl3)δ 7.41~7.23(m,3H),7.20~7.09(m,2H),4.44(s, 1H),3.08(d,J=14.6 Hz,1H),2.66(s,2H),2.52(dd,J=14.6,3.1 Hz,1H),2.24~2.10(m,3H),1.95(d,J=14.3 Hz,1H),1.15(s,6H),1.10(s,3H), 0.82(s,3H).13C NMR(100 MHz,CDCl3)δ 199.3, 198.9,193.1,176.6,136.0,128.9,128.6,128.5, 113.6,103.8,54.9,53.6,51.0,49.9,37.2,34.2, 30.5,30.4,28.8,28.4,26.3;IR(KBr)υ:3457, 2950,1711,1640,1395,1257,1136,799 cm-1; ESI-HRMS calcd for C23H26O4+Na 389.1723,found 389.1726.
Crystal data for 3a:C23H26O4(386.18),Monoclinic,space group P2(1)/c,a=a=10.4594(11)Å, alpha=90 deg.b=5.9873(5)Å,beta=105.320(7)deg..c=16.5045(16)Å,gamma=90 deg.U=996.84,specimen 0.576 x 0.166×0.162 mm3,Z=4, T=296(2)K,SIEMENS P4diffractometer,absorption coefficient 0.083 mm-1,reflections collected 40523,unique 8794/4183[R(int)=0.0225],refinement by Full-matrix least-squares on F2,data/ restraints/parameters 4183/1/245,goodness-offit on F2=1.040,final R indices[I>2sigma(I)]R1=0.0433,wR2=0.1124,R indices(all data)R1= 0.0567,wR2=0.1218,largest diff.peak and hole 0.265 and-0.364e.
化合物3b1H NMR(400 MHz,CDCl3)δ 7.10(d,J=8.0 Hz,2H),7.03(d,J=8.0 Hz,2H),4.41(s,1H),3.08(d,J=14.6 Hz,1H),2.65(s,2H), 2.53(dd,J=14.6,3.1 Hz,1H),2.30(s,3H),2.24~ 2.12(m,3H),2.00(d,J=14.3 Hz,1H),1.15(s, 6H),1.12(s,3H),0.83(s,3H).13C NMR(100 MHz,CDCl3)δ 199.4,199.0,193.2,176.4,138.4, 132.9,129.7,128.3,113.7,103.8,54.8,53.7,51.1, 50.0,37.2,34.2,30.5,28.9,28.4,26.3,21.1;IR(KBr)υ:3449,2965,1709,1639,1394,1257, 1141,801 cm-1;ESI-HRMS calcd for C24H28O4+Na 403.1880,found 403.1877
化合物3c1H NMR(400 MHz,CDCl3)δ 7.06(d,J=8.6 Hz,2H),6.81(d,J=8.5 Hz,2H),4.41(s,1H),3.76(s,3H),3.07(d,J=14.6 Hz,1H), 2.64(s,2H),2.52(dd,J=14.6,2.9 Hz,1H),2.29~ 2.06(m,3H),1.99(d,J=14.4 Hz,1H),1.14(s, 6H),1.11(s,3H),0.82(s,3H).13C NMR(100 MHz,CDCl3)δ 199.4,199.1,193.2,176.3,159.6, 129.6,127.9,114.3,113.6,103.7,55.2,54.5,53.7, 51.1,50.0,37.2,34.2,30.5,30.5,28.9,28.4,26.3; IR(KBr)υ:3455,2966,1736,1642,1379,1236, 1143,797 cm-1;ESI-HRMS calcd for C24H28O5+Na 419.1829,found 419.1836.
化合物3d1H NMR(400 MHz,CDCl3)δ 7.28(d,J=8.6 Hz,2H),7.10(d,J=8.4 Hz,2H),4.41(s,1H),3.05(d,J=14.7 Hz,1H),2.65(s,2H), 2.54(dd,J=14.7,3.1 Hz,1H),2.27~2.09(m,3H), 1.97(d,J=14.3 Hz,1H),1.15(s,3H),1.13(d,J= 2.1 Hz,6H),0.84(s,3H).13C NMR(100 MHz, CDCl3)δ 199.0,198.6,193.1,176.8,134.6,129.8, 129.2,113.5,103.5,53.9,51.0,49.9,37.2,34.2, 30.6,30.4,28.8,28.3,26.2;IR(KBr)υ:3450, 2963,1705,1628,1389,1250,1131,803 cm-1; ESI-HRMS calcd for C23H25ClO4+Na 423.1334, found 423.1339.
化合物3f1H NMR(400 MHz,CDCl3)δ 7.19(t,J=7.5 Hz,1H),7.08(d,J=7.6 Hz,1H),6.95(d,J=9.4 Hz,2H),4.40(s,1H),3.08(d,J=14.6 Hz,1H),2.66(s,2H),2.53(dd,J=14.6,2.9 Hz, 1H),2.30(s,3H),2.24~2.11(m,3H),1.97(d,J= 14.3 Hz,1H),1.16(s,6H),1.12(s,3H),0.83(s, 3H).13C NMR(100 MHz,CDCl3)δ 199.4,198.8, 193.2,176.5,138.6,135.9,129.4,129.1,128.8, 125.6,113.6,55.0,53.6,51.1,50.0,37.2,34.2, 30.5,28.9,28.4,26.3,21.4;IR(KBr)υ:3452, 2957,1707,1636,1388,1251,1135,813 cm-1; ESI-HRMS calcd for C24H28O4+Na 403.1880,found 403.1881.
化合物3g1H NMR(400 MHz,CDCl3)δ 7.37~7.30(m,1H),6.32(dd,J=3.2,1.8 Hz,1H), 6.16(d,J=3.2 Hz,1H),4.67(s,1H),3.10(d,J= 14.5 Hz,1H),2.61(d,J=1.9 Hz,2H),2.54(dd,J =14.6,2.9 Hz,1H),2.32-2.18(m,4H),1.17(d,J =1.6 Hz,6H),1.15(s,3H),0.85(s,3H).13C NMR(100 MHz,CDCl3)δ 199.3,198.6,193.1,177.6, 142.8,111.3,110.1,109.9,52.6,51.1,50.1,48.1, 37.3,34.2,30.6,30.4,28.8,28.3,26.2;IR(KBr)υ: 3449,2961,1712,1642,1395,1256,1135,804 cm-1;ESI-HRMS calcd for C21H24O5+Na 379.1516, found 379.1512.
化合物3h1H NMR(400 MHz,CDCl3)δ 7.18 ~7.10(m,2H),7.01(t,J=8.6 Hz,2H),4.43(s, 1H),3.05(d,J=14.7 Hz,1H),2.66(d,J=1.1 Hz, 2H),2.55(dd,J=14.7,3.1 Hz,1H),2.27~2.12(m, 3H),1.96(d,J=14.3 Hz,1H),1.16(d,J=4.3 Hz, 6H),1.14(s,3H),0.85(s,3H).13C NMR(100 MHz,DMSO)δ 199.06,198.79,193.14,176.68, 130.24,130.16,116.15,115.93,113.64,54.19, 53.87,51.08,50.02,37.28,34.26,30.57,30.50, 29.70,28.85,28.41,26.26;IR(KBr)υ:3449,2957, 1707,1635,1390,1250,1130,809 cm-1;ESIHRMS calcd for C23H25FO4+Na 407.1629,found407.1622.
化合物3l1H NMR(400 MHz,CDCl3)δ 3.42(dd,J=7.8,4.4 Hz,1H),3.00(d,J=14.5 Hz, 1H),2.79(d,J=14.2 Hz,1H),2.66(dd,J=14.1, 3.2 Hz,1H),2.55~2.41(m,3H),2.21(s,2H), 1.40~1.23(m,7H),1.12(s,6H),0.86(dd,J= 12.7,5.3 Hz,6H).13C NMR(100 MHz,CDCl3)δ 199.79,199.34,194.19,177.31,113.66,103.78, 54.70,51.23,49.95,47.53,37.32,34.02,33.67, 30.75,30.46,28.65,28.49,25.85,19.74,14.26;IR(KBr)υ:3453,2957,1709,1644,1397,1251, 1136,807 cm-1;ESI-HRMS calcd for C20H28O4+Na 355.1880,found 355.1885.
2.1 条件优化
表1 反应条件的优化
由表1可以看出:α-溴代丙二酸二乙酯1b做溴代试剂比α-溴代环己二酮1a反应的时间要短一些,得到收率较高(表1,编号1~2)。而用NBS作为溴代试剂时,该反应剧烈,并有大量的热放出,长时间反应导致反应体系变得比较复杂,NBS消耗大,收率偏低(表1,编号3)。因此,α-溴代丙二酸二乙酯相对于NBS来说反应条件较为温和,而且收率较高。随后对溶剂进行了筛选。氯仿作为溶剂时产率最高,收率达到91%(表1,编号4)。以乙醇作为反应溶剂时,反应速度较慢,相同时间收率不高,只有60%(表1,编号6);不过值得注意的是,产物在乙醇的溶解性较差,可以简单过滤、洗涤,就可以得到纯度为95%以上的产物。四氢呋喃(THF)作溶剂反应很干净,但是反应不能进行彻底(表1,编号5)。最后,对碱进行了筛选,以无机碱代替三乙胺后,收率明显下降(表1,编号7,8)。通过筛选,该反应的优化条件是:以α-溴代丙二酸二乙酯1b为溴代试剂,三乙胺(TEA)为碱,反应物在室温下搅拌8 h。
2.2 底物扩展
表2 底物的扩展
根据此优化条件,对底物的适用性进行了研究,实验结果表2。实验结果说明,脑文格/迈克尔加成产物2上的芳基的取代基对该反应的收率有一定的影响;对苯环上取代基的改变,可以看出当苯环上具有给电子基团时,产率变化不是很大,如图1中的产物3a~3c,收率达85%~91%;即使给电子基团取代基在芳环上的间位时,产物3f同样可以获得很好的收率。但是取代基变为拉电子基团时,产率明显下降,产物3d,3h,收率为中等偏上(77%,73%)。以脂肪链代替芳环时,在相同的条件下,也取得了很好的收率(3I,80%)。此外,以杂环呋喃环代替芳环时,反应也能顺利进行,并获得较好的收率(3g,80%)。
为了对化合物3的结构进行确证,我们对化合物3a进行单晶培养,顺利得到了单晶,并通过单晶衍射仪进行了测定,确定了化合物3a的结构(图2)。
图2 化合物3a的晶体衍射
本文通过α-溴代丙二酸二乙酯作为一种溴代试剂成功的引发了由芳香醛和5,5-二甲基-1,3-环己二酮的脑文格/迈克尔加成物(2a~2g)的自身环化反应,高效的合成了螺二氢呋喃衍生物,该反应条件温和,收率高,并通过单晶衍射测定了化合物的结构。此外,发展了一类新的溴代试剂(1a~1b),这类溴代试剂相对于单质溴和NBS来说具有更加温和的特性,有望应用于活性较高、对单质溴和NBS较敏感的化合物的溴代反应中。
[1]Tanemura K,Suzuki T,Nishida Y,et al.A mild and efficient procedure forα-bromination of ketones using N-bromosuccinimide catalysed by ammonium acetate[J]. Chem.Commun.,2004:470-473.
[2]王海涛,吴瑛,吴廷华.乙烷溴氧化制溴乙烷的研究[J].广州化工,2008,36(2):34-36.
[3]吴警,裴文.N-溴代丁二酰亚胺在有机反应中的研究进展[J].广州化工,2011,39(9):31-34.
[4]Sharma V B,Jain S L,Sain B.An efficient cobalt(II) catalyzed oxidation of secondary alcohols to carbonyl compounds with N-bromosuccinimide[J].J Mol Catal., 2005:227-231.
[5]Eicher T,Hauptmann S.The chemistry of heterocycles: structure,reactions,syntheses and applications[M].Wiley-VCH:Weinheim,2003:103-127.
[6]Cousins D J.Medicinal,essential oil,culinary herb,and pesticidal plants of the Labiatae[M].CAB International: Wallingford,1994:78-96.
[7]Devi P S,Santosh K G,Vandana V,et al.Single-pot synthesis of spiroannulated dihydrofurans by iodineammonium acetate-mediated reaction of dimedone with aldehydes[J].Synthetic Commun.,2009,39:3406-3419.
Synthesis of Spiro Dihydrofurans Based on a Novel Bromination Reagent
CHENG Yi-min1,2,BAO Jia-xin1,XIE Jian-wu1
(1.College of Chemistry and Life Science,Zhejiang Normal University,Jinhua,Zhejiang 321004,China;2.Zhejiang Dongyang Jinxin Chemical Industry Co.,Ltd.,Jinhua,Zhejiang 322100,China)
An efficient method for the synthesis of spiro dihydrofuran derivatives was demonstrated, based on a novel bromination reagent(diethyl-bromomalonate)and base under mild conditions.The products were obtained in excellent yield(68%~91%).The structure of spiro dihydrofuran derivatives was established by NMR and X-ray.A possible mechanism of this unusual reaction process was proposed.
dihydrofurans;bromination reagent;diethyl α-bromomalonate;cyclization reaction
1006-4184(2015)8-0026-04
2015-00-00
程益民(1972—),男,浙江东阳人,工程师,研究方向:农药合成。E-mail:liuyxzjnu@qq.com。