韩晓博,梁志剑
(1.中北大学仪器科学与动态测试教育部重点实验室,山西 太原 030051;2.中北大学电子测试技术国家重点实验室,山西 太原 030051)
现代导弹从出现已经过去了50 多年,这50 年当中导弹技术不断发展。其中包括了伴随着导弹而发展起来的新型学科-外弹道学,它不仅研究导弹飞行过程中质心的运动过程还研究了姿态控制学与制导理论等。外弹道学涉及到的技术范围广且需要各个学科相互联系[1]。本文研究的是铅垂平面内,弹丸质心的运动轨迹,建立质心运动方程组,已知弹丸初始状态利用四阶龙格库塔方法求解发射轨迹。据此编写了LABVIEW 程序实现解算过程并且将轨迹显示出来[3-7]。
研究弹丸质心的运动过程,第一步要做基本假设:
1)整个发射至击中目标的运动过程中,攻角为0。
2)弹丸是轴对称的。
3)地面为平面。
4)飞行过程中重力加速度大小不变且垂直向下。
5)科氏加速度为0。
6)大气条件为标准大气条件,无风。
图1 直角坐标系
在此基础之上,作用于弹丸的力只有重力与空气阻力。依此弹丸的质心运动方程为式(1)。
由于ax=cHτ(y)G(vτ)v,所以得到了弹丸质心的运动方程组为式(2)。
式中:ax为空气阻力加速度;c 为具有弹丸特征的弹道系数;H(y)为空气密度函数;G(v)为阻力函数[1]。
四阶龙格库塔法广泛用于模拟仿真应用中的弹道解算,在工程中被称为“高精度单步算法”。由欧拉公式导出,k1为一阶精度的欧拉公式,k2 用xi点处的k1 与xi+1的k2 的平均值作为平均斜率的近似值。就会得到二阶的欧拉公式。以此类推得到四阶龙格库塔方程如式(3)所示。龙格库塔法因单步四次计算,计算量大,因此广泛使用于计算机仿真计算[2]。
根据弹丸质心运动方程组,使用四阶龙格库塔法,在LABVIEW 软件平台编写软件解算弹道轨迹。在LABVIEW中依据Runge-Kutta 算法VI 建立解算方程。Runge-KuttaVI如图2 所示。
图2 Runge-KuttaVI
此Ⅵ需要初始状态的数据。根据弹丸质心运动方程组,初始点已知。当t=0 时,x=0;y=0;u=v0cosθ0;w=v0sinθ0。θ0为发射角已知。X(name of variables)为变量名称将质心运动方程组所涉及的变量名设置为字符串数组。time start 为初始时间为0,time end 为结束时间。h(step rate)为步长设置为1。X0 为对应于X 变量名的数据信息,这里设置u=700;w=700;y=0;x=0。time 设为t。F(X,t)为对应变量名的函数名。程序设置如图3 所示。
图3 程序框图
以固定的弹体,在标准大气压条件下,c 为常数;x,y 为0;纵向与横向初速度分别设为100、200、300、400、500。记录解算数据:时间、最大高度、最远距离如表1 所示。
表1 解算数据表
初速度为707 m/s 解算出的轨迹曲线如图4 所示。
图4 初速度707 m/s 轨迹图
经过数据仿真实验,得出结论。此弹道解算软件具有可靠性,解算出的弹道数据对弹道研究具有一定的现实意义。
[1]韩子鹏.弹箭外弹道学[M].北京:北京理工大学出版社,2008.
[2]王励扬,翟昆朋,何文涛,等.四阶龙格库塔算法在捷联惯性导航中的应用[J].计算机仿真,2014(11) :56-59.
[3]袁媛,李绍稳.基于LABVIEW 的虚拟仪器技术研究与应用[J].农业网络信息,2005(4) :6-10.
[4]何春鹏.基于LabVIEW 的数据处理与仿真的研究[D].北京:北京交通大学,2008.
[5]赵志强.基于LabVIEW 的多任务测控系统及数据库的应用研究[D].重庆:重庆大学,2006.
[6]徐超.LabVIEW 在实时测控系统中的应用研究[D].重庆:重庆大学,2005.
[7]高璐.基于LabVIEW 的飞控系统传感器性能补偿与信号处理平台设计[D].南京:南京航空航天大学,2006.