植物启动子研究进展

2015-10-26 08:51李田孙景宽刘京涛
生物技术通报 2015年2期
关键词:元件特异性启动

李田 孙景宽 刘京涛

(滨州学院 山东省黄河三角洲生态环境重点实验室,滨州 256603)

植物启动子研究进展

李田 孙景宽 刘京涛

(滨州学院 山东省黄河三角洲生态环境重点实验室,滨州 256603)

植物启动子在转录水平上发挥着重要的调控作用,对其功能进行研究不仅可以反映相应基因的表达模式,还能为利用植物基因工程手段实现基因的高效特异性表达提供有效途径。结合近年来的相关研究,综述了植物启动子的结构特点及其功能研究进展,重点对与生物和非生物胁迫有关的各类诱导型启动子进行了阐述,并展望了植物启动子的未来研究方向。

植物启动子;诱导型启动子;生物和非生物胁迫

基因工程在实现重要作物遗传性状的改良中较传统植物育种具有较大的优势。特别是通过基因工程手段可同时引入两个或多个基因以此实现植物多种性状的改良,缩短育种时间,因此自该技术诞生以来一直被广泛应用于植物研究领域。基因工程技术作为改良植物性状的有效途径,其中加强对植物转录水平的调控研究一直是该研究领域的热点之一。

转录水平的调控在植物基因调控中发挥着重要作用,涉及多种顺式作用元件和反式作用因子。启动子(Promoter)是一类与启动基因表达相关的顺式作用元件,通过与特定的转录因子结合,控制基因转录的起始与表达。基因的表达可受转录、翻译等不同水平上的调控,因此,启动子作为转录水平上重要的调控元件,在基因工程领域开发和利用高效特异的启动子具有重要的研究意义和应用价值。

1 植物启动子的结构特征

启动子的结构可影响它与RNA聚合酶II的识别、结合,从而影响基因表达的水平。研究表明,正是由于启动子中包含的各种特征性元件保证了转录过程的有效进行。对于一个典型启动子的结构特征通常包括转录起始位点、TATA-box、 CAAT-box、GC-box,以及位于转录起始点较远位置的增强子、沉默子等元件。

植物中启动子的转录起始位点通常位于-193--9 bp之间,其保守序列为CTCATCA,且前导序列富含A+T。研究发现水稻ZB8基因启动子中转录起始位点的碱基改变会影响转录过程[1]。此外,高等植物的转录起始位点的帽子结构对于转录起始也具有关键作用[2]。植物启动子的核心元件TATA-box是绝大多数植物启动子正确表达所必需的,位于转录起始点上游-30--25 bp处,主要控制转录的精确起始,不同基因的TATA-box不仅共有序列存在差异,而且所包含的数目也不相同。除了上述核心元件,植物启动子中包含的一般上游元件对于启动子的启动活性也具有重要作用。CAAT-box和GC-box的作用主要是控制转录起始的频率,但CAAT-box相比后者对转录起始频率的影响更大。其中CAAT-box位于转录起始点上游约-100--80 bp处,除影响转录起始频率外,该元件对两个方向都有激活作用,且作用距离不定[3]。目前发现可与之结合的转录因子有CTFl、CTF2和CEBP等。对于少数无TATA-box的真核基因,其启动子序列通常富含GC-box。GC-box位于-110--80 bp处,其核心序列为GCCACACCC或GGGCGGG,且一般为多拷贝,其功能的发挥不受序列方向的影响,目前发现转录因子SPl与之结合后才能发挥作用。此外,在真核基因转录起始点的上游或下游,一般具有长度为100-200 bp的增强子序列,其核心组件10 bp左右,可增强转录的水平,如在35S启动子-393 bp和-90 bp之间就发现了具有增强基因表达的增强子序列[4]。沉默子是一段可以降低或关闭基因转录的启动子序列,其作用的发挥不受序列方向及距离远近的影响,目前有关沉默子具体作用序列的研究还很少。

2 组成型启动子的研究

组成型启动子的基因表达不具组织和时间特异性,外界因素对组成型启动子启动的外源基因表达几乎没有影响。目前常用的CaMV35S、水稻肌动蛋白(ActinI)启动子、玉米泛素(Ubiquitin)启动子等均属于这一类型。其中,CaMV35S启动子最早在烟草花叶病毒中发现,对它的研究已经十分清楚,不仅指出其基本结构包括TATA-BOX、CAATBOX、反向重复序列及增强子核心序列,还对启动子不同区段的具体功能进行了详细划分[5]。目前为止,CaMV35S启动子已成为植物表达载体构建中最常用的启动子之一,由于该启动子在双子叶植物中具有高效表达的特点,且能在所有细胞和任何时候进行转录,因此对于获得大量的外源蛋白来说具有很大的优势,已被广泛应用于启动外源基因的表达。除了这一最为常用的CaMV35S启动子之外,从木尔坦棉花曲叶病毒(CLCuMV)中分离到CLCuMVC1基因启动子,其活性是CaMV35S启动子的3-5倍,且几乎可在转基因植株中的任何部位表达,因此是一类极具应用潜能的组成型强启动子[6]。

但CaMV35S启动子在单子叶植物中的启动活性很低,因此人们又开发利用了适于单子叶植物高效表达的水稻ActinI启动子和玉米Ubiquitin启动子等,其中玉米中采用Ubiquitin启动子启动CAT基因的表达比采用35S启动的基因表达效率高出10倍[7,8]。此外,Lu等[9]还从水稻中分离到新的rubi3启动子,并对该启动子及其5'-UTR的内含子序列的启动活性进行了研究,该启动子使基因在各个组织中表达,且启动活性高于玉米中发现的Ubi-1启动子,因此是一类在单子叶植物中极具应用价值的强效组成型启动子。

3 组织特异性启动子的研究

组织特异性启动子除包含应有的一般启动子元件外,还具有增强子以及沉默子的特性,该类启动子的优点在于可启动基因在植物组织特定部位的表达,避免外源基因的不必要表达,从而节约植物体的整体能量消耗。因此,通过采用不同的组织特异性启动子可实现外源基因在植物不同器官与组织中的表达。

目前已经分离到许多可在植物营养器官中表达的启动子。例如,可在火炬松维管组织中特异性表达的启动子PAL,通过对特定区段的缺失突变发现PtaPAL启动子区的-897 bp--420 bp可在次生木质部中特异表达,并通过EMSA技术证明位于-897--674 bp的顺式作用元件AC可与火炬树中来源于木质部的蛋白发生特异性结合[10]。此外,还发现了许多可以在植物维管组织中的韧皮部特异性表达的启动子,如柑橘韧皮部蛋白基因(CsPP)启动子、拟南芥韧皮部基因(AtPP2)启动子、拟南芥蔗糖运输基因(AtSUC2)启动子[11]。Zhang等[12]通过将Athspr与GUS和GFP报告基因融合表明这一启动子主要启动基因在植物维管组织中的特异性表达,且通过与37个维管组织特异性表达启动子进行比较发现,这类启动子中均包括植物激素应答元件、光反应元件、生物和非生物胁迫响应元件以及组织特异性表达元件。此外,研究表明单子叶植物水稻中的Ca2+-ATPase启动子全长具有维管组织表达特异性,其不同区段的缺失突变试验表明,该启动子还可对干旱、高盐、病原菌等多种胁迫予以响应[13]。

此外,分离获得有效的可在植物繁殖器官特异表达的启动子对于以收获果实和种子为主的作物来说具有重要意义,目前有关这类启动子的研究也较为广泛。从大豆中分离得到的在果实和花组织特异性表达的Msg启动子主要启动基因在植物的蜜腺、长角果保卫细胞以及花柄部位表达,在成熟叶片中未见表达,进一步研究发现位于启动子区约650 bp的TATA区与其组织特异性表达无关,这一发现与之前认为组织特异性元件一般位于TATA框附近的研究结论存在差异[14]。单子叶植物中也存在大量组织特异性启动子,如从大麦中分离到的Lem1启动子,通过构建该启动子的GFP融合蛋白表达载体,表明该启动子主要启动基因在大麦的外稃和内稃中表达,而在其他营养组织或大麦成熟期则不表达。缺失试验表明,这种基因组织特异性表达是由距离转录起始位点80 bp内的一个顺式作用元件决定的。除此之外,启动子上游还存在生长素、乙烯和赤霉素激素响应元件[15]。近期发现的豇豆储藏蛋白基因8SGα启动子驱动下的GUS酶活活性是CaMV35s启动子活性的2-4倍,且该启动子具有种子表达特异性,因此可作为种子生物反应器的高效特异启动子来应用[16]。

4 诱导型启动子的研究

植物为更好的适应自然环境,保持正常生长,还形成了某些特异的诱导型启动子,这类启动子正常生长条件下启动活性很低甚至不启动转录,但受到外界胁迫时,又可高效的启动转录。

目前发现的这类启动子有很多。其中有关盐诱导型启动子方面,拟南芥中的rd29A是较早发现的一个可被盐等非生物胁迫诱导的启动子,将该启动子与GFP融合表达,在高盐和干旱胁迫条件下GFP蛋白较35S驱动下的表达要强[17]。CAM基因被认为与植物的耐盐性相关,为此人们在不同物种中对这一基因的启动子区进行了研究,如Schaeffer等[18]克隆了盐生植物冰花中CAM基因的启动子序列,并对盐胁迫下启动子区的增强区和沉默区进行了研究。此外,从大豆中分离到GmCaM基因的启动子序列,缺失突变试验结果表明该启动子的盐胁迫响应顺式作用元件位于-858--728 bp处,在此基础上,构建不同缺失区段的GUS报告基因表达载体,通过转基因烟草试验表明在NaCl(150 mmol/L)和病原菌胁迫后GUS酶活约为35S启动子驱动活性的4倍,EMSA试验进一步证明启动子区的A2(-1207--1128 bp)和 C1(-858--728 bp)可与盐和病原胁迫后大豆中的核蛋白形成紧密复合物,从而发挥启动功能[19]。甜菜碱醛脱氢酶(BADH)基因启动子也是一类盐诱导型启动子,如从盐生植物中亚滨藜(Atriplex centralasiatica)中分离到的BADH基因启动子,以及从辽东栎中克隆到的BADH启动子均被证明是一类强效盐诱导启动子,转基因试验表明随着盐浓度的增加启动子各区段的GUS染色也越深[20,21]。pib基因启动子也被认为具有盐诱导启动活性,该类启动子含有盐诱导GAAAAA元件,将其与GUS基因相连后,转基因植株的GUS酶活在盐胁迫后增加[22]。碱蓬和苋菜CMO基因启动子也可被盐胁迫诱导,其中碱蓬CMO基因启动子中的盐诱导GAAAAA元件在增强植物耐盐性中具有重要作用[23]。而在全长约1 600 bp的AmCMO启动子中,发现其上游区段410 bp处的启动子在盐胁迫下GUS活性最强,因此认为AmCMO启动子的盐诱导活性主要与该区段中的盐响应顺式作用元件有关[24]。

在单子叶水稻中克隆到的盐诱导启动子有Rab16A启动子和OsDREB1B启动子。其中Rab16A启动子只在盐胁迫下才可被诱导表达,而OsDREB1B启动子则可受盐、ABA、PEG非生物胁迫及其他生物胁迫的诱导[25]。此外,在小麦和大麦中也发现了部分耐盐启动子,其中小麦中的Ttd1a启动子可受NaCl和光诱导,该启动子很可能通过CAAT元件与DNA结合蛋白相结合发挥作用[26],而来源于大麦HAV22基因的ABRC1启动子则可显著提高转ABRC1-CBF1番茄的耐盐性[27]。

近期从白骨壤中克隆到AmMYB1基因的启动子,通过转基因植株GUS染色证明其启动活性与盐诱导相关,序列分析发现该启动子区不仅含有胁迫响应顺式元件ABRE,还具有一个包含AtRD22-Like顺式作用元件的MYB识别位点(MRS)。上述启动子序列分析表明,盐胁迫过程中,AmMYB1转录因子可能通过与自身的顺式作用元件结合发挥调控作用,也有可能通过植物自身的其他不同类型的MYB蛋白与MRS位点结合调控AmMYB1基因的表达。此外,该启动子区还包含一个与AtRD22相似的MYC位点,其中MRS和MYC均可对外界胁迫刺激予以反应[28]。结合有关AmMYB1转基因功能验证试验,表明该基因在盐胁迫条件下主要通过调控与光合作用有关的基因表达来增强耐盐性[29]。

表1 植物中的各类诱导型启动子

除上述盐诱导型启动子外,目前发现的其他各类诱导型启动子具体见表1。这些转录因子分别在植物应对不同环境条件(光、干旱、高温、低温和激素)等方面发挥着极其重要的作用。

5 展望

植物中存在多个水平的基因表达调控,其中转录水平的调控主要受顺式作用元件和转录因子两方面的协同调控。因此加强对高效启动子的开发利用是目前基因工程领域兴起的又一热点[76]。目前人们得到的各类启动子中,由于诱导型启动子较组成型启动子而言,其具有在特异环境条件下表达的独特优势,因此在利用基因工程手段提高植物耐逆性中具有很大的应用前景。此外,人们还通过不断筛选新的具有重要应用价值的诱导型启动子以满足某些基因的特异性表达,而且通过基因改造手段,对已获得各类型启动子进行改造与组合,构建出兼有高效表达和特异性表达的复合启动子,如通过将拟南芥组织特异型启动子p85和胁迫诱导型启动子p87联合构建的双向启动子可显著增加转基因拟南芥和烟草的组织表达特异性和盐胁迫诱导特异性[77]。总之,加强对新型启动子的克隆与研究不仅对了解基因的表达调控模式具有重要意义,而且对利用基因工程手段提高植物耐逆性同样具有重要意义。且伴随着各类启动子克隆方法的发展,人们克隆得到的各类启动子数目将会不断增加。因此,进一步的研究在于深入分析启动子中的重要作用元件的具体序列,以及明确与这些顺式作用元件相作用的具体转录因子,从而为揭示植物耐逆等方面的调控机制以及提高外源基因的表达提供更有效的技术手段。

[1]Liu YG, Mitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR [J]. The Plant Journal, 1995, 8(3):457-463.

[2]Joshi CP. An inspection of the domain between putative TATA box and translation start site in 79 plant genes [J]. Nucleic Acids Research, 1987, 15(16):6643-6653.

[3]Bezhani S, Sherameti I, Pfannschmidt T, et al. A repressor with similarities to prokaryotic and eukaryotic DNA helicases controls the assembly of the CAAT box binding complex at a photosynthesis gene promoter [J]. J Biol Chem, 2001, 276(26):23785-23789.

[4]Odell JT, Knowlton S, Lin W, et al. Properties of an isolated transcription stimulating sequence derived from the cauliflower mosaic virus 35S promoter [J]. Plant Mol Biot, 1988, 10:263-272.

[5]Benfey PN, Ren L, Chua NH. Ttssue-specific expression from CaMV35S enhancer subdomains in early stages of plant development[J]. EMBO J, 1990, 9(6):1677-1684.

[6]Xie Y, Liu Y, Meng M, et al. Isolation and identification of a super strong plant promoter from cotton leaf curl Multan virus [J]. Plant Molecular Biology, 2003, 53:1-14.

[7]Sohal AK, Pallas JA, Jenkins GI. The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis [J]. Plant Molecular Biology, 1999, 41:75-87.

[8]李为民, 王志兴, 裴新梧, 等. 中棉光诱导基因Gacab启动子的克隆及功能分析 [J]. 农业生物技术学报, 2004, 12(3):253-257.

[9]Lu J, Sivamani E, Li X, et al. Activity of the 5’ regulatory regions of the rice poly ubiquitin rubi3 gene in transgenic rice plants as analyzed by both GUS and GFP reporter genes [J]. Plant Cell Rep,2008, 27:1587-1600.

[10]Osakabe Y, Osakabe K, Chiang VL. Characterization of the tissuespecific expression of phenylalanine ammonia-lyase gene promoter from loblolly pine(Pinus taeda) in Nicotiana tabacum [J]. Plant Cell Rep, 2009, 28:1309-1317.

[11]Miyata LY, Harakava R, Stipp LC, et al. GUS expression in sweet oranges(Citrus sinensis L. Osbeck) driven by three different phloem-specific promoters [J]. Plant Cell Rep, 2012, 31:2005-2013.

[12]Zhang L, Yang T, Li X, et al. Cloning and characterization of a novel Athspr promoter specifically active in vascular tissue [J]. Plant Physiol Biochem, 2014, 78:88-96.

[13]Huda KM, Banu MS, Pathi KM, et al. Reproductive organ and vascular specific promoter of the rice plasma membrane Ca2+ATPase mediates environmental stress responses in plants [J]. PLoS One, 2013, 8(3):e57803.

[14]Strömvik MV, Sundararaman VP, Vodkin LO. A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs [J]. Plant MolecularBiology, 1999, 41:217-231.

[15]Skadsen RW, Sathish P, Federico ML, et al. Cloning of the promoter for a novel barley gene, Lem1, and its organ-specific promotion of Gfp expression in lemma and palea [J]. Plant Molecular Biology,2002, 49:545-555.

[16]Chen MX, Zheng SX, Yang YN, et al. Strong seed-specific protein expression from the Vigna radiata storage protein 8SGα promoter in transgenic Arabidopsis seeds [J]. J Biotechnol, 2014, 174:49-56.

[17]张俊莲, 王蒂, 张金文, 等. 用绿色荧光蛋白和洋葱表皮细胞检测拟南芥rd29A基因启动子活性的方法 [J]. 植物生理学通讯, 2005, 41(6):815-819.

[18]Schaeffer HJ, Forstheoefel NR, Cushman JC. Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism(CAM) genes in the facultative halophyte Mesembryanthemum crystallinum [J]. Plant Mol Biol, 1995, 28(2):205-218.

[19]Park HC, Kim ML, Kang YH, et al. Functional analysis of the stress-inducible soybean calmodulin isoform-4(GmCaM-4)promoter in transgenic tobacco [J]. Mol Cells, 2009, 27:475-480.

[20]Yin X, Zhao Y, Luo D, et al. Isolating the promoter of a stressinduced gene encoding betaine aldehyde dehydrogenase from the halophyte Atriplex centralasiatica Iljin [J]. Biochim Biophys Acta,2002, 1577(3):452-456.

[21]Zhang Y, Yin H, Li D, et al. Functional analysis of BADH gene promoter from Suaeda liaotungensis K [J]. Plant Cell Rep, 2008,27(3):585-592.

[22]李婵娟, 杨世湖, 武亮, 等. pib基因启动子及其诱导启动性初探 [J]. 遗传, 2006, 28(6):689-694.

[23]Li Q, Yin H, Li D, et al. Isolation and characterization of CMO gene promoter from halophyte Suaeda liaotungensis K [J]. Journal of Genetics and Genomics, 2007, 34(4):355-361.

[24]Bhuiyan NH, Hamada A, Yamada N, et al. Regulation of betaine synthesis by precursor supply and choline monooxygenase expression in Amaranthus tricolor [J]. J Exp Bot, 2007, 58(15-16):4203-4212.

[25]Gutha LR, Reddy AR. Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance [J]. Plant Mol Biol, 2008, 68:533-555.

[26]Woodrow P, Pontecorvo G, Ciarmiello LF, et al. Ttd1a promoter is involved in DNA-protein binding by salt and light stresses [J]. Mol Biol Rep, 2011, 38:3787-3794.

[27]Tang L, Kwon SY, Kim SH, et al. Enhanced tolerance of transgenic potato plants expressing both superoxide dis-mutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature [J]. Plant Cell Rep, 2006, 25(12):1380-1386.

[28]Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators in abscisic acid signaling [J]. Plant Cell, 2003, 15:63-78.

[29]Ganesan G, Sankararamasubramanian HM, Harikrishnan M, et al. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco [J]. Journal of Experimental Botany, 2012, 63(12):4549-4561.

[30]Coca MA, Almoguera C, Thomas TL, et al. Differential regulation of small heat-shock genes in plants:analysis of a water stress inducible and developmentally activated sunflower promoter [J]. Plant Mol Biol, 1996, 31:863-876.

[31]Ralf P, Fritz S. Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation [J]. Plant Mol Biol, 1996, 31:157-162.

[32]Rojas A, Almoguera C, Jordano J. Transcriptional activation of a heat shock gene promoter in sunflower embryos:synergism between ABI3 and heat shock factors [J]. The Plant Journal,1999, 20(5):601-610.

[33] Navarre C, Sallets A, Gauthy E, et al. Isolation of heat shock-induced Nicotiana tabacum transcription promoters and their potential as a tool for plant research and biotechnology [J]. Transgenic Res, 2011, 20:799-810.

[34] Rerksiri W, Zhang X, Xiong H, et al. Expression and promoter analysis of six heat stress-inducible genes in rice [J]. Scientific World Journal, 2013, doi:10.1155/2013/397401.

[35] Dunn MA, Whitel AJ, Vural S, et al. Identification of promoter elements in a low temperature responsive gene(blt4.9)from barley(Hordeum vulgare L.) [J]. Plant Molecular Biology, 1998, 38:551-564.

[36]Brown AP, Dunn MA, Goddard NJ, et al. Identification of a novel low-temperature response element in the promoter of the barley(Hordeum vulgare L)gene bhl01.1 [J]. Planta, 2001, 213:770-780.

[37]Zarka DG, Vogel JT, Cook D, et al. Cold induction of Arabidopsis CBF genes involves multiple ICE(inducer of CBF expression)promoter elements and a cold-regulatory circuit that is desensitized by low temperature [J]. Plant Physiology, 2003, 133:910-918.

[38]Kim HJ, Kim YK, Park JY, et al. Light signalling mediated by phytoehrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element(C/DRE) in Arabidopsis thaliana [J]. The Plant Journal, 2002,29(6):693-704.

[39]Dolferus R, Jacobs M, Peacock WJ, et al. Differential interactions of promoter stress responses of the Arabidopsis elements in Adh gene[J]. Plant Physiol, 1994, 105:1075-1087.

[40]Nordin K, Heino P, Palva ET. Separate signal pathways regulate the expression of a low-temperature induced gene in Arabidopsis thaliana(L.) [J]. Heynh Plant Mol Biol, 1991, 16:1061-1072.

[41]Kasuga M, Miura S, Shinozaki K, et al. A combination of the Arabidopsis DREB1A gene and stress-inducible RD29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer [J]. Plant Cell Physiol, 2004, 45(3):346-350.

[42]杜娟, 朱祯, 李晚忱. 植物逆境诱导启动子mwcs120的克隆及表达特性研究 [J]. 作物学报, 2005, 31(10):1328-1332.

[43]Takumi S, Koike A, Nakata M, et al. Cold specific and lightstimulated expression of a wheat(Triticum aestivum L.)Cor gene Wcorl5 encoding a chloroplast targeted protein [J]. Journal of Experimental Botany, 2003, 54:2265-2274.

[44]Kovalchuk N, Jia W, Eini O, et al. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters [J]. Plant Biotechnol J, 2013, 11(6):659-670.

[45]Xu D, McElroy D, Thornburg RW, et al. Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate, and abscisic acid in transgenic rice plants [J]. Plant Mol Biol, 1993, 22(4):573-588.

[46]Leung J, Girauda TJ. Abscisic acid signal transduction [J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49:199-222.

[47]Taylor JE, Renwick KF, Webb AA, et al. ABA-regulated promoter activity in stomatalguard cells [J]. Plant J, 1995, 7(1):129-134.

[48]Rai M, He CK, Wu R. Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice [J]. Transgenic Res, 2009, 18(5):787-799.

[49]Narusaka Y, Nakashima K, Shinwari ZK, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses [J]. Plant J, 2003, 34:137-148.

[50]Xu D, Li J, Gangappa SN, et al. Convergence of Light and ABA signaling on the ABI5 promoter [J]. PLoS Genet, 2014, 10(2):e1004197.

[51]Yang YZ, Tan BC. A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis [J]. PLoS One, 2014, 9(1):e87283.

[52]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nat Biotechnol, 1999, 17:287-291.

[53]朱丽萍, 于壮, 邹翠霞, 等. 植物逆境相关启动子及功能[J].遗传, 2010, 32(3):229-234.

[54]Zahur M, Maqbool A, Irfan M, et al. Functional analysis of cotton small heat shock protein promoter region in response to abiotic stresses in tobacco using Agrobacterium-mediated transient assay[J]. Mol Biol Rep, 2009, 36:1915-1921.

[55]Behnam B, Iuchi S, Fujita M, et al. Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription [J]. DNA Res,2013, 20(4):315-324.

[56]Xiao FH, Xue GP. Analysis of the promoter activity of late embryogenesis abundant protein genes in barley seedlings under conditions of water deficit [J]. Plant Cell Rep, 2001, 20(7):667-673.

[57]Li M, Wang X, Cao Y, et al. Strength comparison between coldinducible promoters of Arabidopsis cor15a and cor15b genes in potato and tobacco [J]. Plant Physiol Biochem, 2013, 71:77-86.

[58]Ayadi M, Mieulet D, Fabre D, et al. Functional analysis of the durum wheat gene TdPIP2;1 and its promoter region in response to abiotic stress in rice [J]. Plant Physiol Biochem, 2014, 79:98-108.

[59]Lamppa G, Nagy F, Chua NH. Ligh-tragulated and organ-specific expression of a wheat Cab gene in transgenic tobacco [J]. Nature,1985, 316:750-752.

[60]Tada Y, Sakamoto M, Matsuoka M, et al. Expression of a monocot LHCP promoter in transgenic rice [J]. Embo J, 1991, 10(7):1803-1808.

[61]王念捷, 程奇, 任延国, 等. 水稻4CL基因启动子引导的GUS在紫外诱导下的组织特异性表达[J]. 中国农业科学, 1996,29(1):73-77.

[62]Inaba T, Nagano Y, Reid JB, et al. DEl:a 12 bp cis-regulatory element sufficient to confer dark-inducible and light down-regulated expression to a minimal promoter in pea [J]. J Biol Chem, 2000,275:19723-19727.

[63]Welsch R, Medina J, Giuliano G, et al. Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana [J]. Planta, 2003, 216:523-534.

[64]Li J, Liang D, Li M, et al. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stressinducible cis-elements in their promoters [J]. Planta, 2013, 238(3):535-547.

[65]Yoon IS, Park DH, Mori H, et al. Characterization of an auxininducible 1-aminocyclopropane-1-carboxylate synthase gene, VRACS6, of mungbean(Vigna radiata L. Wilczek) and hormonal interactions on the promoter activity in transgenic tobacco [J]. Plant Cell Physiol, 1999, 40(4):431-438.

[66]Liu ZB, Ulmasov T, Shi X, et al. Soybean GH3 promoter contains multiple auxin-inducible elements [J]. Plant Cell, 1994, 6(5):645-657.

[67]Wang X, Replogle A, Davis EL, et al. The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feeding site of heterologous plan [J]. Molecular Plant Pathology,2007, 8(4):423-436.

[68]Song FM, Goodman RM. Cloning and identification of the promoter of the tobacco Sar8.2b gene, a gene involved in systemic acquired resistance [J]. Gene, 2002, 290:115-124.

[69]Li A, Chen L, Ren H, et al. Analysis of the essential DNA region for OsEBP-89 promoter in response tomethyl jasmonic acid [J]. Science in China Series C:Life Sciences, 2008, 51(3):280-285.

[70]Coutos-Thévenot P, Poinssot B, Bonomelli A, et al. In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stiibene synthase Vst1 gene under the control of a pathogen-inducible PR 10 promoter[J]. J Exp Bot, 2001, 52:901-910.

[71]Peng JL, Bao ZL, Li P, et al. Hanpinxoo and its functional domains activate pathogen-inducible plant promoters in Arabidopsis [J]. Acta Botanica Sinica, 2004, 46(9):1083-1090.

[72]Sa Q, Wang Y, Li W, et al. The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fun GUS-inducible expression patterns and responds to both salicylic acid and jasmonic acid [J]. Plant Cell Rep, 2003, 22(1):79-84.

[73]李云锋, 朱蕊, 谢龙旭, 等. 大麦 β-1, 3-葡聚糖酶基因(GIII)启动子在转基因水稻中的诱导表达 [J]. 植物生理与分子生物学学报, 2005, 31(2):143-148.

[74]Gao Y, Zan XL, Wu XF, et al. Identification of fungus-responsive cis-acting element in the promoter of Brassica juncea chitinase gene BjCHI1 [J]. Plant Sci, 2014, 215-216:190-198.

[75]Chai C, Lin Y, Shen D, et al. Identification and functional characterization of the soybean GmaPPO12 promoter conferring Phytophthora sojae induced expression [J]. PLoS One, 2013, 8(6):e67670.

[76]Acharya S, Ranjan R, Pattanaik S, et al. Efficient chimeric plant promoters derived from plant infecting viral promoter sequences [J]. Planta, 2014, 239(2):381-396.

[77]Banerjee J, Sahoo DK, Dey N, et al. An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic Arabidopsis and tobacco plants [J]. PLoS One, 2013, 8(11):e79622.

(责任编辑 狄艳红)

Research Advances on Plant Promoter

Li Tian Sun Jingkuan Liu Jingtao
(Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta,Binzhou University,Binzhou 256603)

Plant promoters play important regulatory roles at the transcription level, to study their functions can not only reflect the expression patterns of corresponding genes, but also provide an effective way for the use of plant genetic engineering to achieve efficient expression of specific genes. In this paper, recent studies were reviewed about their structural characteristics and functions, the various types of inducible promoters related to biotic and abiotic stress were mainly introduced, and the future research directions for plant promoters were prospected.

plant promoters;inducible promoters;biotic and abiotic stress

10.13560/j.cnki.biotech.bull.1985.2015.02.003

2014-07-19

国家自然科学基金项目(31400525),山东省自然科学基金项目(ZR2014CQ028),滨州学院博士基金项目(2014Y06),滨州学院科研基金项目(BZXYL1306)

李田,女,博士,讲师,研究方向:分子生物学;E-mail:912litian@163.com

猜你喜欢
元件特异性启动
雾霾来袭 限产再次启动
精确制导 特异性溶栓
安发生物启动2017
QFN元件的返工指南
BOPIM-dma作为BSA Site Ⅰ特异性探针的研究及其应用
重复周围磁刺激治疗慢性非特异性下腰痛的临床效果
儿童非特异性ST-T改变
在新兴产业看小元件如何发挥大作用
宝马i3高电压元件介绍(上)
西部最大规模云计算中心启动