基于似然同步方法的非线性脑电信号分析方法

2015-10-14 07:07:32勤,黎源,谭
电子科技大学学报 2015年2期
关键词:睁眼同步性脑电

袁 勤,黎 源,谭 波



基于似然同步方法的非线性脑电信号分析方法

袁 勤,黎 源,谭 波

(电子科技大学生命科学与技术学院 成都 610054)

头皮脑电信号具有非平稳特性,相干等传统分析方法并不能很好地检测这些脑电时间序列间的依赖关系。广义同步中的似然同步算法对非平稳信号处理具有较好的效果,该文将它应用到实际脑电信号分析中。基于单向耦合Henon映射系统和实际脑电数据的仿真结果均表明,基于广义同步的似然同步方法适用测量非平稳信号间关系。针对健康被试静息态下,从闭眼到睁眼的过程中脑电信号间同步性的变化进行了研究,发现从闭眼到睁眼过程中,大脑的alpha波在几乎所有电极间的同步强度都显著地减弱,大脑的活动受到一定的抑制。上述结果也表明该方法在脑电数据分析中具有重要的意义,为其他的脑电研究提供一定的参考方法。

alpha波; 脑电; 闭眼; 睁眼; 似然同步

人类的大脑被认为是宇宙间最为复杂的物体,试图理解正常或者功能紊乱大脑的内部连接模式是现代科学研究中最具挑战的领域。19世纪末期,研究者已经认识到大脑内部的神经元构成了一个强大而又复杂的网络结构[1-2],目前研究中脑网络包括结构网络和功能网络,结构网络描述大脑的解剖连接状态,包括不同区域结构形态上的相关和真实的解剖连接;功能网络主要用来描述大脑不同区域结构之间的功能连接和有效的连接[2]。

功能网络构建的测量手段主要包括脑电图(electroencephalography,EEG)、脑磁图(magnetoencephalogram,MEG)和功能磁共振成像(functionalmageneticresonanceimaging,fMRI)等[1,3]。脑功能网络构建的第一步就是测量不同脑区活动间的相关性,目前普遍采用线性技术衡量记录信号之间的关系,包括皮尔森相关、偏相关(时域)及偏相干(频域)等技术[2-3]。这些线性方法的应用存在一个局限性,它们只能较好地捕捉信号之间的线性关系,却不能很好地检测两个动态系统之间非线性的关系。由于大脑自身的特征,研究者使用非线性的研究方法挖掘大脑信号之间的关系,包括同步和互信息技术[4-5]。

同步(synchronization)通常被用来表示两个或多个系统随时间变化的相对关系。研究者发现当混沌系统出现耦合时,将伴随出现许多同步现象,包括完全同步(identical synchronization)、相位同步、滞后同步、广义同步以及间歇延迟同步[5-6]。其中广义同步是研究最广的一种同步方式,它是指在两个动态系统和间,当系统的状态响应是通过系统的函数来进行驱动时,当函数连续时,XX是系统中的两个非常接近的点,那么相应的点YY也是系统中两个非常接近的点[4-5]。广义同步的概念被提出后,相应地出现了基于广义同步理论的几个算法来检测实验数据的相互关系。随着研究的深入,研究者们对这些算法进行不断的改进和完善。文献[4]提出了似然同步算法(synchronization likelihood),该算法对两个或多个同时记录的时间序列信号之间的相互依存关系给出了一个简单的标准化估计;相比其他算法,似然同步算法更适合于分析脑电等非平稳信号[4,6]。

本文基于似然同步这种非线性的衡量方法来测量不同区域(不同电极间)间的同步关系,为了检测这种方法应用于非线性系统的表现及效果,首先利用一个混沌系统(是由两个单向耦合Henon映射所构成)对该算法进行实现并仿真。此外,验证正确性后将该算法应用到实际的静息态下的脑电信号。通过上述算法分析静息态下睁眼和闭眼两种不同条件下的脑电信号同步性,从而找出两种不同静息态下的脑电信号同步性上存在的差异,为后续脑电的研究提供一定的参照。

1 似然同步原理

(2)

(4)

(6)

2 数据仿真及静息脑电的分析

2.1 似然同步法的实现及仿真效果

为检测本文所使用程序的正确性以及似然同步方法用于非线性数据时的表现,利用一个混沌系统对程序进行仿真。该系统是两个单向耦合Henon映射[4-5],包括一个驱动系统和一个响应系统,并且满足,具体方程如下:

1) 似然同步算法是否能正确表示系统之间的同步性,即当两系统随着耦合系数的增加,无论处于哪种情况,两系统的似然同步值是否也相应增大;

2) 检测本文使用的似然同步算法的正确性。仿真过程中耦合参数由0以0.1的步长递增到1,两个系统和间的似然同步值如图1所示。由图1可知,无论是两个相同系统()或是两个不同系统()间的似然同步值,均随着系统间耦合强度的增加而增加。图2给出了时不同耦合系数情况下和信号在1 000~1 100次迭代变化情况。

图1 似然同步法的仿真结果

图2 不同耦合系数下的信号强度

2.2 真实脑电数据仿真结果

为了把改算法应用到真实的脑电数据,本文截取一段真实的脑电数据,经过滤波提出alpha波成分(8~13 Hz),再加入不同程度的高斯噪声信号,使得信噪比(SNR)分别为0、5、10、20、30 dB。图3显示原始信号和5段仿真信号,横坐标表示时间过程,纵坐标表示幅度大小,两者都属于无量纲变量。由图4可以看出随着信噪比的增加,仿真信号与原始信号越来越相似,因而可利用似然同步方法衡量原始信号和加入噪声后信号的同步性,比较不同信噪比条件下信号之间的同步情况。

仿真中原始脑电信号和加入不同噪声的脑电信号的似然同步值的变化情况如图4所示。

由于实际脑电测量都会不同程度地引入各类噪声,因此在仿真中加入了不同程度的噪声数据。仿真结果显示,似然同步方法可以较好地衡量任务态EEG信号之间的同步性。

图4 不同信噪比时信号之间的同步值

2.3 静息态闭眼与睁眼的脑电数据分析

为了研究正常人在闭眼和睁眼状态下大脑同步性上存在的差异,本文采集了21个健康被试在静息态下的脑电数据,实验范式包含闭眼和睁眼两部分。脑电采集系统采用的是129导的EGI脑电采集系统,采样率是500 Hz,共采集了3 min闭眼和3 min睁眼的脑电数据。经过一些预处理步骤(去坏导、去漂移、平均参考、滤波等)后得到两种静息状态下alpha波(8~13 Hz)的脑电数据。利用似然同步法对预处理后的脑电数据进行每导信号与所有其他128导信号的同步强度计算,平均后得到一个同步值。

图5 闭眼和睁眼状态下大脑同步性的比较

图5显示了两种状态下的分析结果,横坐标表示129导电极的编号,纵坐标表示似然同步值,两者都属于无量纲变量。从图可知,从闭眼到睁眼状态下,大脑的alpha波在几乎所有电极上的同步性都有一个显著的减小,这个发现也与之前EEG文献报道的从闭眼到睁眼状态alpha波去同步化的结果是一致的[7-9]。

3 结束语

本文结合混沌系统(包含两个单向耦合Henon映射)对似然同步算法进行了仿真实验,并利用真实脑电数据加入噪声方式对似然同步方法在脑电分析应用中的表现和效果进行了测试,测试结果很好地证实了该方法在脑电应用上的有效性。最后将此算法用于分析静息态闭眼和睁眼两种状态下脑电数据的同步性的比较。主要内容及结果如下:

1) 结合混沌系统对似然同步法的仿真

仿真结果发现:①似然同步算法能正确表示系统之间的同步性,即当两系统随着耦合系数的增加,无论处于哪种情况,两系统的似然同步值也相应增大。②当耦合系数较低()时,和信号间幅度的差异较大,对应两信号的似然同步值较低(约0.15);当耦合系数较高()时,和信号的幅度更为相似,同时两者的似然同步值也接近最大值1。这个检测结果表明了似然同步算法的正确性。

2) 真实脑电数据仿真结果

在真实脑电数据加入噪声来对似然同步法在脑电中的应用效果进行测试,结果发现随着信噪比的增加,仿真信号与原始信号越来越相似,因而可利用似然同步方法衡量原始信号和加入噪声后信号的同步性,比较不同信噪比条件下信号之间的同步情况,仿真结果显示似然同步方法可以较好地衡量任务态EEG信号之间的同步性。也很好地证实了该方法在脑电分析中的有效性。

3) 静息态闭眼与睁眼的脑电数据分析

利用上述的似然同步法来比较静息态下从闭眼到睁眼这个过程中脑电信号alpha波的同步性变化。分析结果发现alpha波在几乎所有电极上的同步性都显著地减小。这个发现也与之前EEG文献报道的从闭眼到睁眼状态alpha波去同步化的结果保持一致。

通过仿真实验、真实的脑电信号的分析,将似然同步的非线性分析方法很好地应用到脑电信号的分析,也说明了该方法的可用性及正确性,同时在静息态下从闭眼到睁眼过程中alpha波的同步性显著减小也进一步支持了先前EEG文献报道的alpha波去同步化的结果,为各种认知任务下大脑动力学特性的研究提供一定的帮助[9-10]。

[1] SPORNS O, CHIALVO D R, KAISER M, et al. Organization, development and function of complex brain networks[J]. Trends In Cognitive Sciences, 2004, 8(9): 418-425.

[2] BULLMORE E, SPORNS O. Complex brain networks: Graph theoretical analysis of structural and functional systems[J]. Nature Reviews Neuroscience, 2009, 10(3): 186-198.

[3] BROVELLI A, DING M, LEDBERG A, et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(26): 9849-9854.

[4] STAM C J, VAN DIJK B W. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets[J]. Physica D, 2002, 163(3-4): 236- 251.

[5] STAM C J, WALSUM A M V, PIJNENBURG Y. Generalized synchronization of MEG recordings in Alzheimer's disease: evidence for involvement of the gamma band[J]. Journal of Clinical Neurophysiology, 2002, 19(6): 562-574.

[6] PIJNENBURG Y A L, MADE Y V, WALSUM A M V, et al. EEG synchronization likelihood in mild cognitive impairment and Alzheimer’s disease during a working memory task[J]. Clinical Neurophysiology, 2003,115(6): 1332-1339.

[7] BARAHONA M, PECORA L M. Synchronization in small-world systems[J]. Physical Review Letters, 2002, 89(5): 99-101.

[8] BARRY R J, CLARKE A R, JOHNSTONE S J, et al. EEG differences between eyes-closed and eyes-open resting conditions[J]. Clinical Neurophysiology, 2007, 118(12): 2765-2773.

[9] KLIMESCH W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis [J]. Brain Research, 1999, 29(2-3): 169-195.

[10] POLLEN D A, TRACHTENBERG M C. Some problems of occipital alpha block in man[J]. Brain Research, 1972, 41(2): 303-314.

编 辑 黄 莘

Nonlinear Analysis of Electroencephalogram Based on Synchronization Likelihood

YUAN Qin, LI Yuan, and TAN Bo

(School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu 610054)

Due to the non-stationary characteristics of scalp electroencephalography (EEG), traditional analysis methods, such as coherent method, etc., can’t well detect statistical dependencies between time series recorded. synchronization likelihood (SL) based on generalized synchronization has been introduced to overcome some limitations of coherent estimations. And it is applied to analyze real EEG signals. Simulation results of Henon mapping system and actual EEG data demonstrate that the SL method is suitable for measuring the relationship between non-stationary signals. The changes of brain synchronization of healthy subjects are studied from eye closed to eye open during rest. Results show that the synchronization of alpha rhythm is significantly reduced in almost all electrodes, and the brain activity has a certain inhibition. All the results show that the method is of great significance in the study of EEG. It provides certain reference for future EEG research.

alpha; EEG; eye closed; eye open; synchronization likelihood

R318.04; R853

A

10.3969/j.issn.1001-0548.2015.02.027

2014-02-27;

2014-12-16

国家自然科学基金(91120016)

袁勤(1965-),男,主要从事神经信息学、脑电和磁共振成像等方面的研究.

猜你喜欢
睁眼同步性脑电
不止愉悦
时滞非线性复杂动态网络的牵引自适应控制同步性
边疆文学(2020年5期)2020-11-12 02:29:46
产品装配中的时间同步性测量技术
电子测试(2018年6期)2018-05-09 07:31:50
现代实用脑电地形图学(续)
现代实用脑电地形图学(续)
现代实用脑电地形图学(续) 第五章 脑电地形图的临床中的应用
终极股权结构、分析师跟进与股价同步性实证研究
现代实用脑电地形图学(续) 第五章 脑电地形图在临床中的应用
提高变电站基础量测数据时间同步性的方法