王晓先, 张进江, 杨雄英
(1.中国地震局地壳应力研究所地壳动力学重点实验室,北京 100085;2.北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京 100871)
特提斯喜马拉雅马拉山花岗岩的年代学、地球化学特征及成因机制
王晓先1,2, 张进江2, 杨雄英2
(1.中国地震局地壳应力研究所地壳动力学重点实验室,北京100085;2.北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京100871)
马拉山花岗岩位于特提斯喜马拉雅的西部,其主要矿物组成为石英、钾长石、白云母和黑云母。锆石LA-MC-ICP-MS U-Pb定年表明,花岗岩的发育记录了(28.0±0.5)Ma和(18.4±0.3)Ma两期深熔作用,(18.4±0.3)Ma代表了最终的结晶时间。全岩地球化学分析结果显示,样品具有高的SiO2(72.36%~72.51%)、Al2O3(15.22%~15.37%)和CaO(1.64%~1.66%)含量,高的K2O/Na2O值(0.97~1.05)和A/CNK值(1.15~1.20),显示高钾钙碱性过铝质的特征;岩石富集Rb、Th、U和K,亏损Ba、Nb、Sr和Zr,Eu负异常不明显(δEu=0.80~0.89),轻重稀土分馏较强[(La/Yb)N=7.09~19.68]。马拉山花岗岩具有较低的Rb/Sr值(0.90~1.10)和较高的CaO/Na2O值(0.44 ~ 0.46),指示岩浆源区物质成分可能以页岩为主;样品(87Sr/86Sr)i和εNd(t)分别为0.742 522 ~ 0.744 097和-14.5 ~ -13.7,与大喜马拉雅结晶杂岩中变质沉积岩成分一致,表明其来自变质沉积岩的部分熔融。岩石具有较低的(87Sr/86Sr)i和较高的Sr含量,且随着Ba含量的增加,Rb/Sr值基本不变,表明马拉山花岗岩是水致白云母部分熔融的产物,部分熔融可能与南北向裂谷的东西向伸展关系密切。
马拉山花岗岩;年代学;地球化学特征;成因机制;特提斯喜马拉雅
始于65~55Ma(BECK et al.,1995;RAGE et al.,1995;ROWLEY,1996)的印度-欧亚大陆的碰撞-汇聚作用,不仅造就了全球规模最大的高原和最年轻、最经典的碰撞型造山带——青藏高原和喜马拉雅造山带,而且在碰撞的中晚期(始新世—中新世)触发了大规模的地壳深熔作用(LE Fort,1975;SEARLE et al.,1997;HARRISON et al.,1999;LEE et al.,2000;SEARLE et al.,2003;ZENG et al.,2011;GUO et al.,2012),形成了2条绵延数千千米的花岗岩带。一条位于大喜马拉雅结晶杂岩(GHC)的顶部,以淡色花岗岩为主,称为大喜马拉雅淡色花岗岩带(Yin,2006);另一条位于特提斯喜马拉雅,以花岗岩为主,称为北喜马拉雅花岗岩带。这些淡色花岗岩/花岗岩主要沿碰撞造山过程形成的伸展构造分布(COPEL et al.,1990;HARRISON et al.,1995a,1995b,1997;COLEMAN,1998;HODGES,2000;SEARLE et al.,2003;ZHANG et al.,2004;ANNEN et al.,2006;GODIN et al.,2006;COTTLE et al.,2007;LEE et al.,2007;YANG et al.,2009;ZENG et al.,2009;KELLETT et al.,2010;LARSON et al.,2010;LELOUP et al.,2010;SACHAN et al.,2010;CHAMBERS et al.,2011;LIU et al.,2012;YAN et al.,2012),并与造山带的演化过程关系密切,是研究造山作用中晚期深部构造-岩浆作用的重要“岩石探针”(莫宣学等,2003)。
北喜马拉雅花岗岩带位于特提斯喜马拉雅的中部,主要有2种产出形式:一种以独立侵入体形式侵入到特提斯喜马拉雅沉积岩系(THS)中,如昌果、打拉和确当等岩体(ZENG et al.,2009;LARSON et al.,2010);另一种主要出露于北喜马拉雅片麻岩穹窿(NHGD)核部,如麻布迦、然巴和雅拉香波等岩体(ZHANG et al.,2004;YAN et al.,2012;LIU et al.,2014)。近年来,许多学者对这些岩体进行了大量的年代学研究,发现北喜马拉雅花岗岩形成时间跨度很大,如东部的雅拉香波穹窿中花岗岩年龄可达44~43Ma(ZENG et al.,2009),而然巴穹窿中淡色花岗岩的年龄仅为8Ma(LIU et al.,2014),但绝大多数岩体集中于26 ~ 13Ma(HARRISON et al.,1997;AOYA et al.,2005;LEE et al.,2006;KAWAKAMI et al.,2007;LEE et al.,2007;LELOUP et al.,2010;LEDERER et al.,2013;MITSUISHI et al.,2012;GAO et al.,2013;GAO et al.,2014)。虽然对北喜马拉雅花岗岩的形成时代已经有了较为准确的厘定,但有关花岗岩的成因问题仍然存在不少的争议。目前,争议的焦点集中在以下两方面:①花岗岩的源区和源岩。大部分学者认为花岗岩来自大喜马拉雅结晶杂岩(GHC)中变质沉积岩的部分熔融(张宏飞等,2005;ZHANG et al.,2004;GAO et al.,2013;GAO et al.,2014);而Zeng 等(2009)基于对雅拉香波穹窿中花岗岩的Sr-Nd同位素研究,认为其源区为增厚地壳中的角闪岩,并有少量变泥质岩参与部分熔融;谢克家等(2010)对打拉花岗岩的研究认为其可能为下地壳基性物质部分熔融的产物。②花岗岩的形成机制。绝大多数的喜马拉雅花岗岩主要来自白云母部分熔融这一结论已基本达成共识(HARRISON et al.,1997,1998;HARRIS et al.,1995;PATIO et al.,1998),但导致白云母部分熔融的触发因素还具有较大的争议,如LE Fort等(1987)认为水等流体的加入可能是导致部分熔融的主要因素,但是部分学者通过实验岩石学研究发现,在无外来流体的情况下,部分熔融也可以发生(HARRIS et al.,1992);而HARRIS和MASSEY(1994)以及DAVIDSON等(1997)认为造山过程中相关的伸展构造发生活动导致的构造减压可能是部分熔融的主要触发因素。后期又有学者提出断裂活动过程中的剪切摩擦生热和放射性同位素生热可以导致部分熔融(HARRISON et al.,1997,1998,1999;VISONet al.,2002)。但理论计算表明,单纯的剪切摩擦热和地壳放射性生热元素生热很难产生大规模的岩浆作用(NABELEK et al.,2004)。由此可见,北喜马拉雅花岗岩的成因问题仍然需要进一步的研究,尤其是来自岩石学、地球化学和同位素地球化学等方面的证据。
本次研究采集吉隆地区佩枯错湖西北部的马拉山花岗岩,在LA-MC-ICP-MS锆石U-Pb年代学分析的基础上,开展全岩主量、微量和Sr-Nd同位素地球化学分析,厘定花岗岩的形成时代,揭示其源区和成因机制,并探讨其构造动力学意义。
狭义的喜马拉雅造山带指雅鲁藏布江缝合带与主前锋逆冲断裂(MFT)之间、由新生代印度-欧亚大陆碰撞形成的强烈变形、变质带(图1)。造山带自北向南发育一系列北倾的断裂,包括藏南拆离系(STDS)、主中央逆冲断裂(MCT)、主边界逆冲断裂(MBT)和MFT;被这些断裂分隔的岩石-构造单元自北向南依次为THS、GHC、小喜马拉雅沉积系(LHS)和西瓦里克前陆盆地沉积(SS)。其中,最北部的THS主要由早古生代到始新世的、经历极低级变质的碎屑岩和碳酸岩组成(BROOKFIELD,1993)。在其中部自西向东分布一系列片麻岩穹窿——北喜马拉雅片麻岩穹窿(NHGD),是北喜马拉雅伸展构造的重要组成部分(张进江,2007);GHC位于STDS和MCT之间,为中高级变质结晶杂岩(AIKMAN et al.,2008);LHS位于MCT和MBT之间,由碎屑沉积岩和低级变质岩组成(BROOKFIELD,1993);最南部为SS,为一套古近系-中新世的海相和陆相沉积。
马拉山花岗岩体位于佩枯错片麻岩穹窿的西北部(图2),其围岩为侏罗纪—白垩纪的砂岩、泥岩、钙质片岩和矽卡岩等。以岩体为中心,围岩中发育环状的巴洛式变质带(KAWAKAMI et al.,2007),但变质级别较低,未见夕线石和混合岩化现象(AOYA et al.,2005),仅在靠近岩体的变质沉积岩中发育红柱石,可能与岩体侵位过程中的接触变质作用有关。构造解析表明,马拉山花岗岩体边缘和围岩经历了强烈的变形,相关构造指示了早期向南逆冲和晚期向北伸展的2期变形作用(AOYA ET al.,2004)。本次研究沿佩枯错湖西北部采集样品,样品被后期变形作用改造为糜棱岩化花岗岩,显示透入性的面理(图3a),显微镜下观察主要矿物组合为石英、钾长石、黑云母和白云母,钾长石以残斑形式存在,黑云母和白云母发生定向排列(图3b)。
2.1锆石U-Pb定年
样品在河北廊坊地质服务有限公司进行破碎,经浮选和磁选后,挑选锆石颗粒进行制靶,然后进行透射光、反射光图像的拍摄,而后在北京大学造山带与地壳演化教育部重点实验室进行锆石阴极发光照相,用于分析锆石成因和确定测年位置点。
锆石U-Pb定年测试工作在天津地质矿产研究所同位素实验室进行。所用仪器为Thermo Fisher公司生产的Neptune型激光剥蚀多接收器等离子体质谱仪(LA-MC-ICP-MS),并结合美国ESL公司生产的UP193-FX ArF准分子激光器,激光剥蚀束斑直径为35μm,激光能量密度为10J.cm-2,频率为10Hz,激光剥蚀物质以He为载气送入Neptune的电感耦合等离子体,GJ-1作为外部锆石年龄标准进行U-Pb同位素分馏校正(BLACK et al.,2003;JACKSON et al.,2004)。在测试过程中,每测定7个样品点前后重复测试两次锆石标样GJ-1。分析数据的离线处理采用ICPMSDataCal程序(LIU et al.,2009)完成,锆石年龄谐和图用Isoplot/Ex(3.0)程序(LUDWIG,2003)获得。
2.2全岩主量、微量元素和Sr-Nd同位素测定
采集的新鲜样品完成岩石化学分析制备后,送往中国科学院地质与地球物理研究所岩石圈演化国家重点实验室进行全岩主量、微量和Sr-Nd同位素测试。
主量元素采用荷兰PA Nalytical 分析仪器公司制作的顺序式X射线荧光光谱仪(AXIOS Minerals)完成测定,分析经度达0.1%~1.0%;微量元素和稀土元素采用Agilent 7500a等离子体质谱仪(ICP-MS)完成测试,对美国地质调查局(USGS)标准参考物质BCR-2、BHVO-2和AGV-1的分析结果显示,分析精度和准确度优于5%。
全岩Sr、Nd同位素的化学分离在中国科学院地质与地球物理研究所固体同位素地球化学实验室完成,并采用德国Finnigan公司生产的MAT-262型热电离质谱仪(TIMS)进行同位素比值的测定,87Sr/86Sr和143Nd/144Nd值分别采用87Sr/86Sr =0.119 4和143Nd/144Nd = 0.721 9进行质量分馏校正。详细的Sr-Nd同位素分析流程参见CHEN等(2002)。
图2 北喜马拉雅佩枯错穹窿地质图和剖面图Fig.2 Geological map and cross-section of the Peiku cuo dome in northern Himalaya
3.1锆石U-Pb定年
马拉山花岗岩样品中大部分锆石呈长柱或短柱状,自形-半自形,棱角清晰,锆石晶粒长度为200 ~ 300μm,长宽比为2∶1~3∶1。绝大部分锆石发育清晰的核-边结构,核部色调较亮且形状不规则,部分发育似港湾状结构,可能为边部锆石生长时熔体或热液作用改造所致。边部较窄(40~60μm)且色调较暗,发育明显的岩浆韵律环带(图4),表明为岩浆成因。
对样品PKC-29中的锆石共进行了31个点位分析,其中9个分析点位于核部,另外22个分析点位于边部,分析结果见表1。核部9个分析点的U和Th含量变化范围为313.6×10-6~ 633.6 ×10-6和110.6 ×10-6~ 359.0 ×10-6,Th/U值较高,为0.19 ~1.13,206Pb/238U表观年龄范围为834.0~403.3Ma,其中4个分析点的加权平均年龄为(486±12)Ma(MSWD=0.04)(图5b)。边部22个分析点的U和Th含量变化范围分别为566.9 ×10-6~858.0×10-6和11.9 ×10-6~ 99.4 ×10-6,Th/U值较低,为0.01 ~ 0.15,206Pb/238U表观年龄范围为239.4~17.9Ma。22个分析点中有5个分析点的年龄较大且位于谐和线之下,可能是测试过程中剥蚀到锆石的核部所致,代表了混合年龄。剩余17个分析点全部落在谐和线上,在U-Pb谐和图上明显分为2组:第一组共8个分析点,Th/U值为0.03~0.11,年龄范围为29.1~26.9 Ma,加权平均年龄为(28.0±0.5)Ma(MSWD =0.8); 第二组共9个分析点,Th/U值为0.01~0.11,年龄范围为18.9~17.9Ma,加权平均年龄为(18.4±0.3)Ma(MSWD=0.5)(图5c、图5d)。2组不同年龄的锆石其边部具有相同的震荡环带以及较低的Th/U值,与深熔成因的花岗岩特征相吻合(WU et al.,2004),代表了2期深熔作用,其中(28.0 ± 0.5)Ma(MSWD = 0.8)与研究区南部佩枯花岗岩体的时代一致(GAO et al.,2013),指示早期的深熔作用,而(18.4±0.3)Ma(MSWD = 0.5)代表了马拉山花岗岩的最终结晶年龄。
图4 马拉山花岗岩样品代表性锆石CL图像Fig.4 Representative CL images of the zircons from the Malashan granite
图5 马拉山花岗岩锆石U-Pb年龄谐和图Fig.5 Zircon U-Pb concordia diagram of the Malashan granite
3.2全岩主量、微量元素和Sr-Nd同位素特征
样品全岩主量、微量和Sr-Nd同位素数据见表2。马拉山花岗岩具有较高的SiO2(72.36% ~ 72.51%)、Al2O3(15.22% ~ 15.37%)和CaO(1.64% ~ 1.66%)。样品的K2O/Na2O值较高,为0.97 ~1.05(表2)。在K2O-SiO2图解中,位于高钾钙碱性系列中(图6a)。A/CNK值为1.15 ~1.20,均大于1.1,在A/NK-A/CNK图解中,全部位于过铝质区域中(图6b)。总体来看,马拉山花岗岩属于高钾钙碱性过铝质花岗岩。
在原始地幔标准化微量元素蛛网图上,马拉山花岗岩显示Rb、Th、U和K的正异常以及Ba、Nb、Sr和Zr的负异常(图6c)。样品稀土元素总量(TREE)为81.37×10-6~108.64×10-6,相对富集轻稀土元素(LREE),亏损重稀土元素(HREE),(La/Yb)N值为7.09~19.68,表明轻、重稀土元素分馏程度较强。在球粒陨石标准化的稀土元素配分模式图中(图6d),显示为右倾型的稀土分布曲线,Eu负异常不明显,δEu值为0.80~0.89。
马拉山花岗岩的(87Sr/86Sr)i较高,为0.742 522~0.744 097,εNd(t)较低,为-14.5~-13.7,Sr-Nd同位素初始比值变化不大。Nd同位素二阶段亏损地幔模式年龄为1 994~1 928Ma,暗示其可能来自古老地壳的重熔。
表2 马拉山花岗岩全岩主量、微量元素和Sr-Nd同位素分析结果
注:主量元素成分含量为%,微量元素成分含量为10-6;LOI为烧失量;A/NK= 摩尔Al2O3/(Na2O+K2O),A/CNK=摩尔Al2O3/(CaO+Na2O+K2O);δEu=2EuN/(SmN+GdN),其中N为球粒陨石标准化值(据SUN et al.,1989)。87Rb/86Sr和147Sm/144Nd通过ICP-MS测试的微量元素Rb,Sr,Sm和Nd计算所得,计算公式为87Rb/86Sr = Rb/Sr × 2.981,147Sm/144Nd = Sm/Nd × [0.531 497 + 0.142 521 ×(143Nd/144Nd)s]。(87Sr/86Sr)t=(87Sr/86Sr)s+87Rb/86Sr(eλt-1),(143Nd/144Nd)t=(143Nd/144Nd)s+147Sm/144Nd(eλt-1);εNd= [(143Nd/144Nd)s/(143Nd/144Nd)CHUR-1] ×104,fSm/Nd=(147Sm/144Nd)CHUR-1。(143Nd/144Nd)CHUR=0.512 638,(147Sm/144Nd)CHUR=0.196 7,(143Nd/144Nd)DM=0.513 15,(147Sm/144Nd)DM=0.213 7;λRb=1.42×10-12/年(STEIGER et al.,1977),λSm=6.54×10-12/年(LUGMAIR et al.,1978);二阶段模式年龄TDM2的计算见JAHN et al.,1999。
图6 (a)马拉山花岗岩的SiO2-K2O图解、(b)A/NK-A/CNK分类图解、(c)原始地幔标准化蛛网图和(d)球粒陨石标准化稀土元素配分模式图(原始地幔和球粒陨石数值据SUN et al.,1989)Fig.6 (a)SiO2-K2O diagram,(b)A/NK-A/CNK diagram,(c)primitive mantle(PM)-normalized trace element spider diagram and (d) chondrite-normalized REE patterns of the Malashan granite
4.1北喜马拉雅花岗岩的时代
北喜马拉雅花岗岩的形成时代一直是国际地学界研究的热点,早期的年代学研究发现其年龄主要为晚渐新世—早中新世(26~13Ma)(高利娥等,2013;HARRISON et al.,1997;ZHANG et al.,2004;AOYA et al.,2005;LEE et al.,2006;KAWAKAMI et al.,2007;LEE et al.,2007;LARSON et al.,2010;LELOUP et al.,2010;MITSUISHI et al.,2012;YAN et al.,2012;GAO et al.,2013;LEDERER et al.,2013;GAO et al.,2014)。然而,近几年随着测年技术的提升,大量高质量的年代学数据被相继报道,如在THS东部,雅拉香波-打拉-确当花岗岩的年龄为44 ~ 43 Ma(戚学祥等,2008;AIKMAN et al.,2008;ZENG et al.,2009);在中部的麻布迦穹窿,淡色花岗岩年龄为10Ma(KALI et al.,2010);在然巴穹窿,LIU等(2014)获得了迄今为止最小的花岗岩年龄为7.6 Ma。这些年龄数据不断的改写北喜马拉雅花岗岩的年龄跨度,随着更多高精度的年代学数据的发表,北喜马拉雅花岗岩的时代需要重新评估。马拉山花岗岩记录了早期(28.0±0.5)Ma(MSWD=0.8)和后期(18.4±0.3)Ma(MSWD=0.5)两期深熔作用。这两期深熔作用均可以与其他穹窿内的花岗岩年龄对比,如然巴穹窿中斑状二云母花岗岩年龄为28.2 Ma(LIU et al.,2014),萨迦穹窿中淡色花岗岩年龄为27.5 Ma(张宏飞等,2004),佩枯错穹窿中二云母花岗岩年龄为28.2 Ma(GAO et al.,2013)。而(18.4±0.3)Ma(MSWD=0.5)这一年龄更是北喜马拉雅中新世花岗岩的主要形成期(吴福元等,2015),如THS西部的昌果花岗岩年龄为18.4 Ma(LARSON et al.,2010),扛错花岗岩年龄为19 Ma(MITSUISHI et al.,2012),佩枯错二云母花岗岩年龄为19.8Ma(GAO et al.,2013)以及东部的雅拉香波淡色花岗岩年龄为20 Ma(YAN et al.,2012)。近期,吴福元等(2015)在前人已发表的大量年代学数据的基础上,借鉴前人的划分方案(HODGES,2000),重新勾画了喜马拉雅花岗岩的年代学格架,将其大致划分为始喜马拉雅阶段(EO-HIMALAYAN;44~26Ma)、新喜马拉雅阶段(NEO-HIMALAYAN;26~13Ma)和后喜马拉雅阶段(POST-HIMALAYAN;13~7 Ma),笔者获得的马拉山花岗岩的2个年龄分别属于上述划分方案中的始喜马拉雅阶段和新喜马拉雅阶段。
4.2马拉山花岗岩的源区和源岩
研究表明,北喜马拉雅花岗岩可能的源区包括GHC变质沉积岩(DANIEL et al.,1987;HARRIS et al.,1992;HARRIS et al.,1994;HARRISON et al.,1999)、LHS变质沉积岩(LE FORt et al.,1987)和THS角闪岩或基性岩等(ZENG et al.,2009;谢克家等,2010)。GUILLOT和LE FORT(1995)认为不同类型的花岗岩来自不同的源区,如二云母花岗岩来自杂砂岩区,而电气石-石榴石花岗岩更多的与泥质岩区有关。马拉山花岗岩主要的矿物组成为石英、钾长石、白云母和黑云母,且云母的含量较高。在地球化学特征上表现为较高的SiO2和Al2O3含量,相对富集大离子亲石元素Rb及放射性生热元素Th和U,亏损高场强元素Ba、Nb、Sr和Zr,这些特征与壳源S型花岗岩的特征吻合。样品的A/CNK值大于1.1,显示强过铝质的特征,强过铝质花岗岩的源区具有多样性,但主要的源区为地壳中的碎屑沉积岩(如泥质岩、页岩、碎屑岩和杂砂岩等)或变质沉积岩(SYLVESTER,1998)。实验岩石学表明,强过铝质花岗岩的CaO与Na2O含量及比值的差异可以反映源区成分的差异(CHAPPELL et al.,1992),一般富斜长石贫泥质的砂质源岩形成的熔体的CaO/Na2O值大于0.3,而贫斜长石富泥质岩的源岩形成的熔体的CaO/Na2O值小于0.3(PATIO DOUCE etal.,1991;SKJERLIE et al.,1996)。马拉山花岗岩的CaO/Na2O值为0.44~0.46,均大于0.3,推测其源区可能以砂质岩或相当成分的岩石为主。另外,富集于云母和长石等矿物中的Rb、Ba、Sr及其比值也可以反映源区的成分性质,在Rb/Ba-Rb/Sr判别图解中(图7a),研究区花岗岩样品均落入贫黏土的页岩成分区,与上述推测的可能的源区物质成分一致。样品具有较高的(87Sr/86Sr)i值(0.742 522~0.744 097)和较低的εNd(t)值(-14.5~-13.7),Nd同位素二阶段亏损地幔模式年龄TDM2为1 994~1 928Ma,表明源区为古老的大陆地壳。综上,马拉山花岗岩的源区为古老大陆地壳的页岩区或相当成分的沉积岩区。
为进一步限定花岗岩的源岩,将马拉山花岗岩样品的Sr、Nd同位素成分与可能的源岩包括GHC变质沉积岩、LHS变质沉积岩和THS片麻岩,以及部分穹窿中花岗岩样品进行综合对比[(87Sr/86Sr)i和εNd(t)值统一以t=18Ma计算],并表示在图7b中。对比结果显示,4件样品的Sr、Nd同位素成分均落入GHC变质沉积岩区域中,且其Nd同位素二阶段亏损地幔模式年龄(1 994~1 928Ma)与GHC变质沉积岩的相同,并与GHC内碎屑锆石获得的2 000Ma的峰值年龄吻合(AHMAD et al.,2000;MILLER et al.,2001;RICHARDS et al.,2005),暗示岩浆来自GHC变质沉积岩的部分熔融。综上所述,认为马拉山花岗岩的源岩主要为GHC变质沉积岩。
4.3马拉山花岗岩的形成机制
喜马拉雅造山带内26~13Ma的花岗岩为典型的S型花岗岩,多数是源岩通过白云母脱水熔融产生的(HARRIS et al.,1995;HARRISON et al.,1997,1998;PATIO ET AL.,1998;ZHANG et al.,2004;KING et al.,2011)。与白云母脱水熔融形成的花岗岩相比,马拉山花岗岩具有完全不同的地球化学组成,其Sr含量较高,而Rb/Sr值和(87Sr/86Sr)i值相对较低,造成这一差异的可能因素包括熔体形成时部分熔融机制的差异或熔体侵位过程中围岩的混染作用,但考虑到样品Sr、Nd同位素相对均一,不随Rb、Sr含量的变化而变化,因此,可以排除围岩混染的影响。
1.大喜马拉雅变质沉积岩;2.小喜马拉雅变质沉积岩;3.北喜马拉雅穹窿片麻岩;4.拉轨岗日淡色花岗岩;5.麻布迦淡色花岗岩;6.然巴淡色花岗岩;7.本次研究图7 (a)马拉山花岗岩的Rb/Sr-Rb/Ba(据SYLYESTER,1998)和(b)(87Sr/86Sr)i - εNd(t)图Fig.7 (a)Rb/Sr versus Rb/Ba diagram(After SYLVESTER, 1998)and(b)(87Sr/86Sr)i - εNd(t)diagram of the Malashan granite (注:Sr-Nd同位素数据来自张宏飞等,2005;AHMAD et al.,2000;MILLER et al.,2001;RICHARDS et al.,2005;ZENG et al.,2011;GUO et al.,2012;WANG et al.,2012)
1.玛纳斯鲁淡色花岗岩;2.拉轨岗日淡色花岗岩;3.定结淡色花岗岩;4.聂拉木淡色花岗岩;5.洛扎淡色花岗岩;6.苦堆淡色花岗岩;7.萨迦淡色花岗岩;8.亚东淡色花岗岩;9.然巴淡色花岗岩;10.吉隆淡色花岗岩;11.本次研究图8 (a)马拉山花岗岩和喜马拉雅造山带内花岗岩的Sr-(87Sr/86Sr)i和(b)Ba-Rb/Sr图Fig.8 (a)Sr versus(87Sr/86Sr)i diagram and (b)Ba versus Rb/Sr diagram of the Malashan granite and other granites from Himalayan orogen(注:Sr和87Sr/86Sr数据来自张宏飞等,2005;HARRISON et al.,1999;GUO et al.,2012)
4.4构造动力学意义
喜马拉雅造山带发育多种类型的花岗岩组合,它们的形成与印度-欧亚大陆碰撞之后的不同的陆内构造过程相联系,反映了不同的构造背景和动力学过程。如44~26Ma的二云母花岗岩主要分布于特提斯喜马拉雅,其结晶时代与喜马拉雅变质岩进变质时代(45~39Ma)(CATLOS et al.,2002;COTTLE et al.,2009)相同,是逆冲增厚条件下地壳深熔作用的产物(ZENG et al.,2005b;AIKMAN et al.,2008)。这些熔体的形成使地壳弱化,并强烈影响着与STDS相关的中下地壳的伸展拆离,被认为是触发STDS启动的重要因素。另一类为中新世(26~13Ma)的淡色花岗岩(吴福元等,2015),在特提斯喜马拉雅和大喜马拉雅均有分布,这类花岗岩的结晶时代与喜马拉雅峰期变质时代一致,杨晓松等(2001)认为这类淡色花岗岩与碰撞后地壳伸展导致的快速隆升和减压熔融有关,而HARRIS和MASSEY(1994)则认为其形成于大喜马拉雅构造楔的迅速折返的减压环境下,总之,与STDS向北伸展拆离的构造活动关系密切。在13Ma之后,喜马拉雅地区还发育一期花岗岩,其年龄集中于13~7Ma(EDWARDS et al.,1997;WU et al.,1998;KALI et al.,2010;LIU et al.,2014),这类花岗岩的共同特点是发育在NSTR的下盘,其形成和侵位与NSTR活动有关(吴福元等,2015)。
马拉山花岗岩的最终结晶年龄为(18.4±0.3)Ma(MSWD=0.5),属于中新世的花岗岩, 仅从年代学考虑,其形成可能与STDS有关。然而,需要指出的是,上述与NSTR有关的花岗岩的年龄数据(13~7Ma)主要来自THS的东部地区,而在西部地区,相关裂谷的启动时间相对较早,为19~17Ma(GARZIONE et al.,2003;MITSUISHI et al.,2012)。马拉山花岗岩位于南北向的吉隆裂谷中,其年龄与邻区的Kung Co裂谷时代(19 Ma,MAYUMI et al.,2012)一致,据此,笔者更倾向于认为其与NSTR东西向伸展的启动有关。
(1)马拉山花岗岩的发育记录了(28.0±0.5)Ma(MSWD=0.8)和(18.1±0.4)Ma(MSWD=1.0)两期深熔事件;岩石为高钾钙碱性过铝质花岗岩,强烈富集大离子亲石元素Rb及放射性生热元素Th和U,亏损高场强元素Ba、Nb、Sr和Zr,轻重稀土元素分馏较强[(La/Yb)N=7.09~19.68],负Eu异常不明显(δEu=0.80~0.89);具有较高的CaO/Na2O值(0.44~0.46)和Sr含量以及较低的Rb/Sr值(0.90~1.10),(87Sr/86Sr)i和εNd(t)分别为0.742 522~0.744 097和-14.5~-13.7。
(2)马拉山花岗岩的源区为贫黏土的页岩区或相当成分的沉积岩区,源岩为GHC变质沉积岩,是水致白云母部分熔融的产物。
(3)马拉山花岗岩分布于吉隆裂谷中,其形成可能与NSTR东西向伸展的启动密切相关。
致谢:锆石定年实验得到天津地质矿产研究所耿建珍工程师的指导和帮助,地球化学测试得到中国科学院地质与地球物理研究所王芳博士和杨岳衡博士的指导和帮助,地球化学数据处理得到合肥工业大学资源与环境工程学院王志强博士的指导,在此一并致谢。
高利娥,曾令森,王莉,等.藏南马拉山高钙二云母花岗岩的年代学特征及其形成机制[J].岩石学报,2013,29(6):1995-2012.
GAO Li’e,ZENG Lingsen,WANG Li,et al.Age and formation mechanism of the Malashan high-Ca two-mica granite within the Northern Himalayan Gneiss Domes,southern Tibet[J].Acta Petrologica Sinica,2013,29(6):1995-2012.
莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10(3):135-148.
MO Xuanxue,ZHAO Zhidan,DENG Jinfu,et al.Response of volcanism to the India-Asia collision[J].Earth Science Frontiers,2003,10(3):135-148.
戚学祥,曾令森,孟祥金,等.特提斯喜马拉雅打拉花岗岩的锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报,2008,24(7):1501-1508.
QI Xuexiang,ZENG Lingsen,MENG Xiangjin,et al.Zircon SHRIMP U-Pb dating for Dala granite in the Tethyan Himalaya and its geological implication[J].Acta Petrologica Sinica,2008,24(7):1501-1508.
吴福元,刘志超,刘小驰,等.喜马拉雅淡色花岗岩[J].岩石学报,2015,31(1):1-36.
WU Fuyuan,LIU Zhichao,LIU Xiaochi,et al.Himalayan leucogranite:Petrogenesis and implications to orogenesis and plateau uplift[J].Acta Petrologica Sinica,2015,31(1):1-36.
谢克家,曾令森,刘静,等.西藏南部晚始新世打拉埃达克质花岗岩及其构造动力学意义[J].岩石学报,2010,26(4):1016-1026.
XIE Kejia,ZENG Lingsen,LIU Jing,et al.Late-Eocene Dala adakitic granite,southern Tibet and geological implications[J].Acta Petrologica Sinica,2010,26(4):1016-1026.
杨晓松,金振民,Huenges E,等.高喜马拉雅黑云斜长片麻岩脱水熔融实验:对青藏高原地壳深熔的启示[J].科学通报,2001,46(3):246-250.YANG Xiaosong,JIN Zhenmin,HUENGES E,et al.Dehydration melting experiments of the biotite-plagioclase gneiss from the Greater Himalaya:implications for crustal anatexis in Tibetan plateau[J].Chinese Science Bulletin,2001,46(3):246-250.张宏飞,HARRIS N,PARRISH R,等.北喜马拉雅淡色花岗岩地球化学:区域对比、岩石成因及构造意义[J].地球科学,2005,30(3):275-288.ZHANG Hongfei,HARRIS N,PARRISH R,et al.Geochemistry of North Himalayan leucogranites:Regional comparison,petrogenesis and tectonic implications[J].Earth Science,2005,30(3):275-288.
张进江.北喜马拉雅及藏南伸展构造综述[J].地质通报,2007,26(6):639-649.
ZHANG Jinjiang.A review on the extensional structures in the northern Himalaya and southernTibet[J].Geological Bulletin of China,2007,26(6):639-649.
AHMAD T,HARRIS N,BICKLE M,et al.Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series,Garhwal Himalaya[J].Geological Society of American Bulletin,2000,112(3):467-477.
AIKMAN AB,HARRISON TM,DING L.Evidence for early(>44Ma)Himalayan crustal thickening,Tethyan Himalaya,southern Tibet[J].Earth and Planetary Science Letters,2008,274(1/2):14-23.
ANNEN C,SCAILLET B,SPARKS R S J.Thermal constraints on the emplacement rate of a large intrusive complex:the Manaslu leucogranite,Nepal Himalaya[J]. Journal of Petrology,2006,47(1):71-95.
AOYA M,WALLIS S R,KAWAKAMI T,et al.The Malashan metamorphic complex in southern Tibet:Dominantly top-to-the north deformation and intrusive origin of its associated granites[J].Himalayan Journal of Science,2004,2(4):92-93.
AOYA M,WALLIS S R,TERADA K,et al.North-south extension in the Tibetan crust triggered by granite emplacement[J].Geology,2005,33(11):853-856.
BECK R A,BURBANK D W,SERCOMBE W J,et al.Stratigraphic evidence for an early collision between Northwest India and Asia[J].Nature,1995,373:55-58.
BLACK L P,KAMO S L,ALLEN C M,et al.TEMORA 1:A new zircon standard for Phanerozoic U-Pb geochronology[J].Chemical Geology,2003,200(1/2):155-170.
BROOKFIELD M E.The Himalayan passive margin from Precambrian to Cretaceous[J].Sedimentary Geology,1993,84(1/2/3/4):1-35.
CATLOS E J,HARRISON T M,MANNING C E,et al.Records of the evolution of the Himalayan orogeny from in situ Th-Pb ion microprobe dating of monazite:eastern Nepal and western Garhwal[J].Journal of Asian Earth Science,2002,20(5):459-479.
CHAMBERS J,PARRISH R R,ARGLES T,et al.A short-duration pulse of ductile normal shear on the outer South Tibetan detachment in Bhutan:Alternating channel flow and critical taper mechanics of the eastern Himalaya[J].Tectonics,2011,30(2).doi:10.1029/2010TC002784.
CHAPPELL B W,WHITE A J R.I and S-type granites in the Lachlan fold belt[J].GSA Special Papers:1992, 272:1-26.
CHEN F,SIEBEL W,SATIR M,et al.Geochronology of the Karadere basement(NW Turkey)and implications for the geological evolution of the Istanbul zone[J]. International Journal of Earth Sciences,2002,91:469-481.
COLEMAN M E.U-Pb constraints on Oligocene-Miocene deformation and anatexis within the Central Himalaya,Marsyandi valley,Nepal[J].American Journal of Science,1998,298(7):553-571.
COPELAND P,HARRISON T M,LE FORT P.Age and cooling history of the Manaslu granite-implications for Himalayan tectonics[J].Journal of Volcanology and Geothermal Research,1990,44(1/2):33-50.
COTTLE JM,JESSUP MJ,NEWELL DL,et al.Structural insights into the early stages of exhumation along an orogen-scale detachment:The South Tibetan Detachment system,Dzakaa Chu section,eastern Himalaya[J]. Journal of Structural Geology,2007,29(11):1781-1797.COTTLE J M,JESSUP M J,NEWELL D L,et al.Geochronology of granulitized eclogite from the Ama Drime Massif:Implications for the tectonic evolution of the South Tibetan Himalaya[J].Tectonics,2009,28,TC1002.doi:10.1029/2008TC002256.
DANIEL C,VIDAL P,FERNANDEZ A,et al.Isotopic study of the Manaslu granite(Himalaya,Nepal):Inferences of the age and source of Himalayan leucogranites[J]. Contributions to Mineralogy and Petrology,1987,96(1):78-92.DAVIDSON C,GRUJIC DE,HOLLISTER LS,et al.Metamorphic reactions related to decompression and synkinematic intrusion of leucogranite,High Himalayan Crystallines,Bhutan[J]. Journal of Metamorphic Geology,1997,15(5):593-612.
EDWARDS M A,HARRISON T M.When did the roof collapse?Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite[J].Geology,1997,25(6):543-546.
GAO LE,ZENG L S.Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome, southern Tibet[J].Geochimica et Cosmochimica Acta,2014,130:136-155.
GAO L E,ZENG L S,HOU K J,et al.Episodic crustal anatexis and the formation of Paiku composite leucogranitic pluton in the Malashan Gneiss Dome,Southern Tibet[J]. Chinese Science Bulletin,2013,58(28/29):3546-3563.
GARZIONE C N,DECELLES P G,HODKINSON D G,et al.East-west extension and Miocene environmental change in the southern Tibetan Plateau,Thakkhola Garben,central Nepal[J].Geological Society of America Bulletin,2003,115(1):3-20.
GODIN L,GRUJIC D,LAW R D,et al.Channel flow,ductile extrusion and exhumation in continental collision zones:An introduction[J].Geological Society Special Publication, 2006,268(1):1-23.
GUILLOT S,LE FORT P.Geochemical constraints on the bimodal origin of High Himalayan leucogranites[J]. Lithos,1995,35(3/4):221-234.
GUO ZF,WILSON M.The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting[J].Gondwana Research,2012,22(2):360-376.
HARRIS N,INGER S.Trace element modeling of pelite-derived granites[J].Contributions to Mineralogy and Petrology,1992,110(1):46-56.
HARRIS N,MASSEY J.Decompression and anatexis of Himalayan metapelites[J].Tectonics,1994,13(6):1537-1546.
HARRIS N,AYRES M,MASSEY J.Geochemistry of granitic melts produced during the incongruent melting of muscovite:Implications for the extraction of Himalayan leucogranite magma[J].Journal of Geophysical Research,1995,100(B8):15767-15777.
HARRISON T M,COPELAND P,KIDD W S F,et al.Activation of the Nyainquentanghla Shear Zone:Implications for uplift of the southern Tibetan Plateau[J]. Tectonics,1995a,14(3):658-676.
HARRISON T M,GROVE M,LOVERA O M,et al.A model for the origin of Himalayan anatexis and inverted metamorphism[J].Journal of Geophysical Research,1998,103(B11):27017-27032.HARRISON T M,GROVE M,MCKEEGAN K D,et al.Origin and episodic emplacement of the Manaslu intrusive complex,central Himalaya[J].Journal of Petrology,1999,40(1):3-19.
HARRISON T M,LOVERA OM,GROVE M.New insights into the origin of two contrasting Himalayan granite belts[J].Geology,1997,25(10):899-902.HARRISON T M,MCKEEGAN K D,LE FORT P.Detection of inherited monazite in the Manaslu leukogranite by208Pb/232Th ion microprobe dating-crystallization age and tectonic implication[J].Earth and Planetary Science Letters,1995b,133(3/4):271-282.
HODGES K V.Tectonics of the Himalaya and southern Tibet from two perspectives[J].Geological Society of America Bulletin,2000,112(3):324-350.
INGER S,HARRIS N.Geochemical constraints on leucogranite magmatism in the Langtang Valley,Nepal Himalaya[J].Journal of Petrology,1993,34(2):345-368.
JACKSON S E,PEARSON N J,GRIFFIN W L,et al.The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology,2004,211(1/2):47-69.
JAHN B M,WU F Y,LO C H,et al.Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex,central China[J].Chemistry Geology,1999,157(1/2):119-146.
KALI E,LELOUP P H,ARNAUD N,et al.Exhumation history of the deepest central Himalayan rocks (Ama Drime range):Key pressure-temperature deformation-time constraints on orogenic model[J].Tectonics,2010,29(2):TC2014. Doi:10.1029/2009TC002551.
KAWAKAMI T,AOYA M,WALLIS S R,et al.Contact metamorphism in the Malashan dome,North Himalayan gneiss domes,southern Tibet:An example of shallow extensional tectonics in the Tethys Himalaya[J]. Journal of Metamorphic Geology,2007,25(8):831-853.KELLETT D A,GRUJIC D,WARREN C,et al.Metamorphic history of a syn-convergent orogen-parallel detachment:The South Tibetan detachment system,Bhutan Himalaya[J]. Journal of Metamorphic Geology,2010,28(8):785-808.
KING J,HARRIS N,ARGLES T,et al.Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet[J].Geological Society of America Bulletin,2011,123(1/2):218-239.
KNESEL K M,DAVIDSON J P.Insights into collisional magmatism from isotopic fingerprints of melting reactions[J].Science,2002,296(5576):2206-2208.
LARSON K P,GODIN L,DAVIS J D,et al.Out-of-sequence deformation and expansion of the Himalayan orogenic wedge:Insight from the Changgo culmination,south central Tibet[J].Tectonics,2010,29(4):1-30.
LE FORT.Himalayas,the collided range:present knowledge of the continental arc[J].American Journal of Science,1975,275:1-44.LEDERER G W,COTTLE J M,JESSUP M J,et al.Timescales of partial melting in the Himalayan middle crust:Insightfrom the Leo Pargil dome,northwest India[J].Contributions to Mineralogy and Petrology,2013,166(5):1415-1441.
LEE J H,WHITEHOUSE M J.Onset of mid-crustal extensional flow in southern Tibet:Evidence from U/Pb zircon ages[J].Geology,2007,35(1):45-48.
LEE J H,MCCLELLAND W,WANG Y,et al.Oligocene-Miocene crustal flow southern Tibet:Geochronology of Mabja Dome[J].Geological Society of London,Special Publications,2006,268:445-469.
LEE J,DINKLAGE B R,WANG W S,et al.Evolution of the Kangmar Dome,southern Tibet:Structural,petrologic,and thermochronologic constrains[J].Tectonics,2000,19(5):872-895.
LELOUP PH,MAHEO G,ARNAUD N,et al.The South Tibet detachment shear zone in the Dinggye area:Time constraints on extrusion models of the Himalayas[J]. Earth and Planetary Science Letters,2010,292(1/2):1-16.
LIU X B,LIU X H,LELOUP P H,et al.Ductile deformation within Upper Himalaya Crystalline Sequence and geological implications,in Nyalam area,Southern Tibet[J]. Chinese Science Bulletin,2012,57(26):3469-3481.
LIU Y S,GAO S,HU Z C,et al.Continental and oceanic crust recycling-induced melt-peridotite interaction in the Trans-North China Orogen U-Pb dating,Hf isotopes and trace elements in zircon from mantle xenoliths[J]. Journal of Petrology,2009,51(1/2):537-571.
LIU Z C,WU F Y,JI W Q,et al.Petrogenesis ofthe Ramba leucogranite in the Tethyan Himalaya and constraints onthe channel flow model[J].Lithos,2014,208/209:118-136.
LUDWIG K R.Users manual forIsoplot/Ex version 3.00:A geochronological took kit for Microsoft Excel version 3.00[M].Berkeley:Geochronology Centre,Special Publication,2003.
LUGMAIR G W,HARTI K.Lunar initial143Nd/144Nd: differential evolution of the lunar crust and mantle[J]. Earth and Planetary Science Letters,1978,39(3):349-357.
MITSUISHI M,SIMON R W,MUTSUKI A,et al.E-W extension at 19 Ma in the Kung Co area,S.Tibet:Evidence for contemporaneous E-W and N-S extension in the Himalayan orogeny[J].Earth and Planetary Science Letters,2012,325/326:10-20.
MILLER C,THÖNI M,FRANK W,et al.The early Paleozoic magmatic event in the Northwest Himalaya,India:source,tectonic setting and age of emplacement[J]. Geological Magazine,2001,138(3):237-251.
NABELEK P I,LIU M.Petrologic and thermal constraints on the origin of leucogranites in collisional orogens[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences,2004,95:73-85.
RAGE J C,CAPPETTA H,HARTENBERGER J L,et al.Collision ages[J].Nature,1995,375:286.
RICHARDS A,ARGLES T,HARRIS N,et al.Himalayan architecture constrained by isotopic tracers from clastic sediments[J].Earth and Planetary Science Letters,2005,236(3/4):773-796.
RICHARDS A,ARGLES T,HARRIS N,et al.Himalayan architecture constrained by isotopic tracers from clastic sediments[J].Earth and Planetary Science Letters,2005,236(3/4):773-796.
ROWLEY D B.Age of initiation collision between India and Asia:Review of the stratigraphic data[J].Earth and Planetary Science Letters,1996,145:1-13.
SACHAN H K,KOHN M J,SAXENA A,et al.The Malarileucogranite,Garhwal Himalaya,northern India:Chemistry,age,and tectonic implications[J].Geological Society of America Bulletin,2010,122(11/12):1865-1876.
SEARLE M P,GODIN L.The South Tibetan Detachment system and the Manaslu leucogranite:A structural re-interpretation and restoration of the Annapurna Manaslu Himalaya,Nepal[J].Journal of Geology,2003,111(5):505-523.
SEARLE M P,PARRISH R R,HODGES K V.Shisha Pangmaleucogranite,south Tibetan Himalaya:Field relations,geochemistry,age,origin,and emplacement[J]. Journal of Geology,1997,105(5):295-317.
SEARLE M P,SIMPSON R L,LAW R D,et al.The structural geometry, metamorphic and magmatic evolution of the Everest massif,High Himalaya of Nepal-South Tibet[J].Journal of Geological Society of London,2003,160(3):345-366.
SKJERLIE K P,JOHNSTON A D.Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phase: implications for anatexis in the deep to very deep continental crust and active continental margins[J].Journal of Petrology,1996,37(3):661-691.
SUN S S,MCDONOUGH W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and process[J].Geological Society of London Special Publication,1989,42(1):313-345.
SYLVESTER P J.Post-collisional strongly peraluminous granites[J].Lithos,1998,45(1/2/3/4):29-44.
WU C,NELSON K D,WORTMAN G,et al.Yadong cross structure and South Tibetan Detachment in the east central Himalaya(89°-90°E)[J].Tectonics,1998,17(1):28-45.
YAN D P,ZHOU M F,ROBINSON P T,et al.Constraining the mid-crustal channel flow beneath the Tibetan Plateau:Data from the Nielaxiongbo gneiss dome,SE Tibet[J].International Geology Review,2012,54(6):615-632.
YANG X Y,ZHANG J J,QI G W,et al.Structure and deformation around the Gyirong basin,north Himalaya,and onset of the south Tibetan detachment[J].Science in China Series D:Earth Sciences,2009,52(8):1046-1058.
YIN A.Cenozoic tectonic evolution of the Himalayan orogeny as constrained by along-strike variation of structural geometry,exhumation history,and foreland sedimentation[J].Earth-Science Reviews,2006,76(1/2):1-131.
ZENG L S,ASIMOW P,SALEEBY J B.Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source[J].Geochimica et Cosmochimica Acta,2005a,69(4):3671-3682.
ZENG L S,GAO L E,XIE K J,et al.Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickening lower continental crust[J].Earth and Planetary Science Letters,2011,303(3/4):251-266.
ZENG L S,LIU J,GAO L E,et al.Early Oligocene anatexis in the Yardoi gneiss dome,southern Tibet and geological implications[J].Chinese Science Bulletin,2009,54(1):104-112.
ZENG L S,SALEEBY J B,ASIMOW P.Nd isotope disequilibrium during crustal anatexis:A record from the Goat Ranch migmatite complex,southern Sierra Nevada batholith,California[J].Geology,2005b,33(1):53-56.
ZHANG H F,HARRIS N,PARRISH R,et al.Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform[J].Earth and Planetary Science Letters,2004,228(1/2):195-212.
ZHANG J J,SANTOSH M,WANG X X,et al.Tectonics of the northern Himalaya since the India-Asia collision[J]. Gondwana Research,2012,21(4):939-960.
Geochronology, Geochemistry and Formation Mechanism of Malashan Granite in Tethyan Himalaya
WANG Xiaoxian1,2,ZHANG Jinjiang2,YANG Xiongying2
(1. Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration,Beijing 100085,China;2. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education,School of Earth and Space Sciences, Peking University, Beijing 100871, China)
The Malashan granite was exposed in the west of the Tethyan Himalayan sedimentary sequence (THS).It is characterized by gneissic texture and the assemblage of quartz, K-feldspar, muscovite and biotite.LA-MC-ICP-MS zircon U-Pb dating results indicated that the granite recorded two episodes of anatexis at (28.0 ±0.5) Ma and (18.4 ±0.3) Ma, respectively.The age of (18.4 ±0.3) Ma represents the final crystallized time of Malashan granite.Geochemical data show that these samples are characterized by high SiO2(72.36%-72.51%), Al2O3(15.22%-15.37%), CaO (1.64%-1.66%) and high value of K2O/Na2O (0.97-1.05) and A/CNK (1.15-1.20), and the enrichment in Rb, Th, U and K, the depletion in Ba, Nb, Sr and Zr, weak negative Eu anomalies (δEu= 0.80-0.89), and strong fractionation between LREE and HREE((La/Yb)N= 7.09-19.68).These features suggest that they are high potassium calc-alkaline and peraluminous granites.The relatively low Rb/Sr ratios(0.90-1.10)and high CaO/Na2O ratios(0.44-0.46)imply that the magma source was probably psammitolite.The (87Sr/86Sr)I(0.742 522 -0.744 097) and εNd(t) (-14.5- -13.7) can compare well with those of the metasedimentary rocks in the Greater Himalaya Crystalline complex (GHC), so these granite wasgenerated from partial melting of the GHC metasedimentary rocks.The features of relatively low (87Sr/86Sr)iand high Sr content,and the constant Rb/Sr ratios relative to large variations in Ba concentrations approve that, the Malashangranite wasderived from fluxed melting of the GHC metasedimentary rocks,possibly associated tightly with the E-W extension along the North-South trend rift system (NSTR).
Malashan granite; geochronology; geochemistry; formation mechanism; Tethyan Himalaya
2015-02-15;
2015-07-07
中央级公益性科研院所基本科研业务专项(ZDJ2014-09)和国家自然科学基金“藏南佩枯错片麻岩穹窿变形-变质作用及形成演化研究”(41402175)联合资助
王晓先(1986-),男,博士,助理研究员,构造地质学专业,主要从事青藏高原地质研究。E-mail:xiaoxianwang@pku.edu.cn
P597
A
1009-6248(2015)04-0070-17