中学数学教学中培养学生发散思维方法探析

2015-05-30 06:26:02张蔚
课程教育研究·学法教法研究 2015年14期
关键词:发散思维数学教学中学

【摘要】发散思维又称扩散思维,它表现为思维视野广阔。在数学教学中,教师需要培养学生的发散思维能力,以提高学生的解题能力。文章介绍了发散思维教学的效果,从营造愉悦的氛围、肯定学生的超常思维、适当进行 “一题多变”等教学活动、激励学生“联想”“猜想”等四个方面介绍了中学数学教学中培养学生发散思维的方法。

【关键词】中学 数学教学 发散思维 培养

【中图分类号】G632 【文献标识码】A 【文章编号】2095-3089(2015)14-0167-02

所谓发散思维,是不依常规,寻求变异,对给出的材料、信息从不同角度,向不同方向,用不同方法或途径进行分析和解决问题的一种思维方式。这种思维方式的最基本的特色是:从多方面、多思路去思考问题,而不是囿于一种思路,一个角度,一条路走到黑。它主要特征是:多向性、变通性、独特性。事实上,在创造性思维活动中,发散性思维又起着主导作用,是创造性思维的核心和基础。

数学教学其实是数学思维活动的教学。学习数学高有开思维,在数学思维过程中最高品质,最高层次,而又最可贵的是创造性思维品质。其实数学家创造能力的大小是与他本身的发散思维能力成正比的,即是说:科科学家的创造能力可用公式估计:创造能力=知识×发散思维能力。而加强发散思维能力的训练,是培养学生创造性思维的重要环节。

1 发散思维教学的效果

发散思维可以进一步开阔学生的视野,让学生的思维在更多更高的层次上得到锻炼。那么,在中学数学教学中,培养学生的发散思维能够带来哪些良好效果呢?

1.1能够较好地培养学生的思维能力和分析、解决问题的能力。发散思维的核心是问题发散,是由此及彼的层递、比较与分析,是将已有知识和新知识的融合,是理论与具体例证的相互印证。所以,学生的思维在教学过程中能够得到多层面的锻炼。

1.2可以使教材的知识点更系统、更符合认知规律,有利于教师完成知识点间的过渡和衔接。

1.3可以扩大知识点的范围,扩充教材容量,弥补教材对知识点解释方面的一些欠缺。

1.4能使学生适时地对旧知识进行复习和回顾,能很好地为以后要学的知识做好铺垫,并能将新旧知识串联在一起,加强理解和记忆。

由以上说明可知,数学发散思维的培养对数学学习有重要的作用,因此在教学中,要加强对学生发散思维的培养。在实际教学中可采用以下几个方面去培养学生的发散思维能力。

2 培养学生发散思维的方法

2.1营造愉悦的氛围,创设发散思维的情景

营造愉悦的氛围,创设发散思维的情景,给学生提供独立思考问题、自己提问题的条件与机会,为发散思维的培养创造良好的内、外部的环境。

教师在课堂上要善于创设思维情景,引导学生积极思维,运用已学过的知识去解决新问题。教师应给学生留足空间,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生,使学生能够与教师一起参与教学活动,真正做学习的主人,形成一种宽松和谐的教育环境。只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力。在创设思维情境过程中,笔者发现组织课堂讨论是一种非常有效的方法,课堂讨论能培养学生敢于提问题、敢于批判、敢于质疑的精神,有利于学生之间的多向交流,取长补短。所以,教师应有意识地搞好合作教学,使教师、学生的角色处于随时互换的动态变化中,设计集体讨论,差缺互补,分组操作等内容,锻炼学生的合作能力。

2.2肯定学生的超常思维

独特性是指发散思维的新奇成分。在活动过程中经常会有学生对某个题有超常、独特、非逻辑性的见解。对于学生中出现的这种情况教师需要及时肯定,为他们以后的发散性思维提供良好基础。

2.3适当进行 “一题多变”、“一法多用”、“一题多解”等教学活动

一题多变是通过题目的引申、变化、发散,提供问题的背景,提示问题间的逻辑关系。新课中,可以以简单题入手由浅入深,使大部分学生对当堂课内容产生兴趣。在习题课中,把较难的题改成多变题目,让学生找到突破口,对难题也产生兴趣。同时要让学生自己尝试改变题目中的某一条件,对知识进行重组,探索出新知识,解决新问题,培养学生多思多变的能力。

2.4激励学生“联想”、“猜想”

数学家发现数学规律的过程,往往是先有一个猜想,而后对猜想进行验证或修正的过程,而猜想又往往是以联想为中介的。在新课程标准下,联想和猜想的数学思维方法在数学学习中时常显现,作为现阶段的初中数学教师,应不断改变教学模式和方式,加强学生对联想和猜想的数学思维方法的指导。

联想是由来源材料分化多种因素,形成的发散思维的中间环节。善于联想,就是善于从不同的方面思考问题,对一类型的题能联想到多种方法。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点却与工程题目相同,因此可用工程问题的解题思路去分析、解答。又如多边形内角和与外角和定理的学习探讨,就可以从三角形、四边形等特殊图形的内角和与外角和定理的探讨入手,引导学生经过一个顶点画对角线,将多边形分成若干三角形然后再进行内角和的讨论;再从外角与相邻的内角的关系出发探讨外角和,从而得出猜想。在这里,三角形,四边形的内角和与外角和的探讨方法便是参照,通过类比猜想得出正确结论。这类题目不仅题型新,而且扩大了知识和能力的覆盖面,通过题目所提供的结构特征,鼓励、引导学生大胆猜想,充分发挥想象能力。

3 结束语

总之,发散思维是多方向性和开放性的思维方式,它同单一、刻板和封闭的思维方式相对立,它承认事物的复杂性、多样性和生动性,在联系和发展中把握事物。发散性思维仿佛具有众多条的“触角”,不拘泥于一个方向、一个框架而向四面八方延伸,可使学生的思维纵横交错,构成丰富多彩的、生动的“意识之网,而这张网可以迅速、灵活地“编”出多种多样的”意识产品。

参考文献:

[1]丁斌毅.开放型习题与发散性思维[J].中学数学教学参考.2005.04.

[2]马春彦.中学数学教学中如何培养学生的发散思维[J]. 数学学习与研究.2013.03.

[3]岳维正.如何在中学数学教学中培养学生的发散思维[J].科教文汇.2008.10.

作者簡介:

张蔚(1982.01- ),女,毕业于济南大学,专业:数学与应用数学。现工作于山东省济南实验初级中学。数学教师,任班主任。现为中教二级。

猜你喜欢
发散思维数学教学中学
在多解中学创新
Big Hero 6: Always be with You
探微小学生解决问题策略的个性化与多元化
试论情感调动与中学散文教学
例谈发散性思维训练
考试周刊(2016年86期)2016-11-11 07:50:41
金融新晋军的“发散思维”
首席财务官(2016年9期)2016-11-07 17:32:58
对数学教学实施“素质教育”的认识
考试周刊(2016年77期)2016-10-09 11:09:44
基于学生主动学习意识培养的数学教学方法研究
成才之路(2016年26期)2016-10-08 11:32:24
注重交流提升数学学习广度和深度探讨
成才之路(2016年26期)2016-10-08 11:29:34
数学教学中“量感”的教学探究
成才之路(2016年25期)2016-10-08 10:43:08