谢成彬, 王频佳, 吴雨露, 颜 源, 易 娟, 苏 喆
·论著·
儿童呼吸道流感嗜血杆菌分离株耐药性与ftsI基因分型研究
谢成彬1, 王频佳2, 吴雨露1, 颜 源1, 易 娟1, 苏 喆1
目的 调查呼吸道感染患儿流感嗜血杆菌分离株的耐药性与ftsI基因的关系。方法 2011年6月—2012年9月,收集呼吸道感染患儿呼吸道标本中分离到的流感嗜血杆菌,用微量肉汤稀释法测定常用抗菌药物最低抑菌浓度(MIC);用Nitrocefin纸片法检测细菌的β内酰胺酶;用聚合酶链反应(PCR)技术对分离株进行ftsI基因分型;比较不同ftsI基因型菌株对常用抗菌药物的耐药性。结果 473株流感嗜血杆菌中产β内酰胺酶菌株占51.8%(245/473),ftsI基因突变率为33.4%(158/473);β内酰胺酶基因阴性氨苄西林耐药型菌株(gBLNAR)以Group Ⅰ/Ⅱ型为主(113/154),68.1%(77/113)的该型菌株对氨苄西林敏感,85.4%(35/41)的gBLNAR Group Ⅲ菌株对氨苄西林不敏感;gBLNAR菌株对头孢克洛、头孢呋辛、头孢曲松和阿莫西林-克拉维酸等β内酰胺类抗生素MIC90和耐药率明显高于gBLNAS(敏感)菌株(P<0.01),对左氧氟沙星、阿奇霉素和甲氧苄啶-磺胺甲口恶唑等非β内酰胺类抗菌药物的MIC90和耐药率与gBLNAS菌株相比差异无统计学意义(P>0.05);gBLNAR Group Ⅲ菌株对β内酰胺类抗生素的MIC90和耐药率高于gBLNAR Group Ⅰ/Ⅱ菌株(P<0.01),两者对非β内酰胺类抗菌药物的MIC90和耐药率差异无统计学意义(P>0.05)。结论 呼吸道感染患儿呼吸道流感嗜血杆菌分离株发生ftsI基因突变的情况较为常见,突变以Group Ⅰ/Ⅱ型为主,明显影响氨基青霉素类和某些第二代头孢菌素的抗菌活性。
流感嗜血杆菌; 耐药性;ftsI基因
流感嗜血杆菌(Haemophilusinfluenzae)是儿童社区获得性呼吸道感染的常见病原菌, 也可引起全身性感染。氨苄西林是治疗流感嗜血杆菌感染的首选药。然而,流感嗜血杆菌对抗菌药物的耐药率不断上升,已经涉及β内酰胺类、氯霉素、甲氧苄啶-磺胺甲口恶唑和大环内酯类等多种抗菌药物[1]。其对氨苄西林的耐受性,一是β内酰胺酶的产生(常见为TEM-1型或ROB-1型),导致氨苄西林被水解失活;二是参与细菌细胞壁合成的青霉素结合蛋白(PBP)的结构发生改变,导致其对氨苄西林的亲和力下降。后一种机制导致的氨苄西林耐药株,被称为β内酰胺酶阴性氨苄西林耐药流感嗜血杆菌(BLNAR)[2]。近年来,临床不断分离到上述2种机制同时出现导致的阿莫西林-克拉维酸耐药株[3],被称为β内酰胺酶阳性阿莫西林-克拉维酸耐药流感嗜血杆菌(β-lactamase positive amoxicillin-clavulanate resistant, BLPACR)。本研究对成都地区儿童呼吸道感染患儿呼吸道分离的流感嗜血杆菌进行PBPs基因分型,了解该基因突变对抗菌药物活性的影响。
1.1 材料
1.1.1 菌株来源 2011年6月—2012年9月从四川省妇幼保健院儿科病区的呼吸道感染患儿(0~5岁)合格痰标本中,分离获得流感嗜血杆菌473株。
1.1.2 主要试剂 抗菌药物氨苄西林、阿莫西林-克拉维酸(2∶1)、头孢克洛、头孢呋辛、头孢曲松、左氧氟沙星、阿奇霉素和甲氧苄啶-磺胺甲口恶唑(1∶19),β内酰胺酶检测试剂(Nitrocefin纸片)和HTM培养基添加剂(NAD和氯化血红素)购自英国OXOID公司;标准菌株流感嗜血杆菌ATCC 49247(β内酰胺酶阴性氨苄西林耐药株)、ATCC 10211(β内酰胺酶阴性氨苄西林敏感株)、ATCC 35056(β内酰胺酶阳性株)和最低抑菌浓度(MIC)药敏板条(各受试抗菌药物均设15个梯度浓度,浓度范围0.016~256 mg/L)购自温州康泰生物技术有限公司;细菌基因组DNA 抽提试剂盒(含蛋白酶K)、溶菌酶、Taq酶(Taq HS)、2.5 mmol/L dNTP Mixture、20 mmol/L 10×PCR Buffer (Mg2+plus)和100 bp DNA Ladder (Dye Plus)购自宝生物工程(大连)有限公司。
1.1.3 引物合成 参考相关文献[4-5]和GenBank中相关基因序列(序列号为NC_000907)分别针对流感嗜血杆菌的β内酰胺酶基因设计引物BL、特异性外膜蛋白P6基因设计引物P6、无Asn-526-Lys氨基酸置换的ftsI基因设计引物PBP3-S、存在Ser-385-Thr氨基酸置换的ftsI基因设计引物PBP3-BLN,由上海生物工程技术有限公司合成,引物序列及产物长度见表1。
表1 PCR引物序列
1.1.4 主要仪器 聚合酶链反应(PCR)扩增仪ABI-9700购自美国应用生物系统有限公司,Ultraspec2000分光光度计购自美国Pharmacia公司,凝胶成像系统购自美国UVP公司,高速冷冻离心机HC-3018R购自安徽中科中佳科学仪器有限公司。
1.2 方法
1.2.1 菌株的分离培养 采用负压吸引方法采集痰液标本,将符合质量标准(白细胞≥25个/LPF,上皮细胞≤10个/LPF)的痰液标本接种嗜血杆菌平皿,35 ℃、5% CO2培养24~48 h,根据菌落形态、革兰染色和糖发酵试验鉴定到种,剔除同一患儿重复株,纯化建株保藏。
1.2.2 药敏试验 按照美国临床实验室标准化协会(CLSI)推荐的微量肉汤稀释法操作指南进行抗菌药物敏感性试验[6],以Mueller-Hinton(MH)肉汤、酵母提取物和HTM培养基添加剂为基础制备HTM肉汤,调整菌液浓度为(1~4)×108CFU/mL,35 ℃、5% CO2培养20~24 h。流感嗜血杆菌ATCC 49247、ATCC 10211、ATCC 35056作为药敏试验质控菌。各菌株均用Nitrocefin纸片进行β内酰胺酶检测。
1.2.3 DNA模板制备 各菌株用HTM肉汤复苏后,离心收集沉淀,严格按试剂盒说明书提取基因组DNA。
1.2.4 PCR扩增 反应体系:DNA模板2.5 μL,引物各1 μL,Taq酶1.5 μL,dNTP 4 μL, PCR缓冲液5 μL,无菌去离子水补足至50 μL。扩增条件:94 ℃预变性10 min,随后94 ℃ 45 s,55 ℃ 45 s,72 ℃ 45 s,循环30次,最后72 ℃再延伸10 min,扩增产物经3%琼脂糖凝胶电泳,紫外灯下判读结果。
1.2.5 统计学处理 使用WHONET5.5和SAS10.0软件对数据进行分析,P<0.05为差异有统计学意义。
2.1 细菌产β内酰胺酶及其对氨苄西林和阿莫西林-克拉维酸敏感性
流感嗜血杆菌产β内酰胺酶的比率为51.8%(245/473),对氨苄西林的耐药率为57.9%(274/473),对阿莫西林-克拉维酸的耐药率为1.3%(6/473)。245株产酶株中对阿莫西林-克拉维酸敏感241株(98.4%,MIC≤4/2 mg/L),耐药4株(1.6%,MIC≥8/4 mg/L)。228株非产酶株中对氨苄西林敏感156株(68.4%,MIC≤1 mg/L),中介43株(18.9%,MIC=2 mg/L),耐药29株(12.7%,MIC≥4 mg/L)。
2.2 细菌的基因分型及其对氨苄西林敏感性
根据PCR基因分型结果,流感嗜血杆菌被分为4种基因型[4]:①β内酰胺酶基因阴性氨苄西林敏感型菌株(gBLNAS),bla基因阴性和ftsI基因上无导致氨基酸置换的突变;②β内酰胺酶基因阴性氨苄西林耐药型菌株(gBLNAR),bla基因阴性和ftsI基因上有导致氨基酸置换的突变;③β内酰胺酶基因阳性氨苄西林耐药型菌株(gBLPAR),bla基因阳性和ftsI基因上无导致氨基酸置换的突变;④β内酰胺酶基因阳性阿莫西林-克拉维酸耐药型菌株(gBLPACR),bla基因阳性和ftsI基因上有导致氨基酸置换的突变。其中,gBLNAR 和gBLPACR菌株又根据ftsI基因上的氨基酸置换模式被分为不同亚型[5]:①Ⅰ/Ⅱ型(gBLNAR Group Ⅰ/Ⅱ和gBLPACR Group Ⅰ/Ⅱ),ftsI基因可突变位点有Asn-526-Lys或Arg-517-His氨基酸置换,若ftsI基因发生Asn-526-Lys氨基酸置换PBP3-S引物将无扩增产物出现;②Ⅲ型(gBLNAR Group Ⅲ和gBLPACR Group Ⅲ),ftsI基因高突变位点有Ser-385-Thr氨基酸置换,若ftsI基因发生Ser-385-Thr置换PBP3-BLN引物可获得扩增产物。见图1。
M: 100 bp DNA Marker; 1: P6 gene; 2: β-lactamase gene; 3: PBP3-S gene; 4: PBP3-BLN gene.
图1 流感嗜血杆菌PCR基因分型结果电泳图
Figure 1 Electrophoretogram of PCR products forH.influenzaeftsIgenotyping
473株流感嗜血杆菌中:158株(33.4%)发生ftsI基因突变,其中113株(23.9%)为gBLNAR Group Ⅰ/Ⅱ菌株,41株(8.7%)为gBLNAR Group Ⅲ菌株,2株(0.4%)为gBLPACR Group Ⅰ/Ⅱ菌株,2株(0.4%)为gBLPACR Group Ⅲ菌株。315株(66.6%)未发生ftsI基因突变, 74株(15.6%)为gBLNAS菌株,241株(51.0%)为gBLPAR菌株。gBLNAR Group Ⅰ/Ⅱ菌株对氨苄西林的MIC50与gBLNAS菌株的MIC50相同,但MIC90和耐药率明显高于gBLNAS菌株(χ2=6.92,P<0.01);gBLNAR Group Ⅲ菌株的MIC50、MIC90和耐药率明显高于gBLNAS菌株(χ2=41.08,P<0.01),并且也明显高于gBLNAR Group Ⅰ/Ⅱ菌株(χ2=27.67,P<0.01)。而gBLPAR菌株和gBLPACR菌株对氨苄西林的MIC50、MIC90和耐药率之间差异无统计学意义(χ2=-6.91,P>0.05)。见表2、表3。
2.3 细菌的基因分型及其对其他抗菌药物敏感性
β内酰胺类抗生素对流感嗜血杆菌gBLNAR菌株的MIC50和MIC90高于gBLNAS菌株(≥2倍和>4倍),其中头孢曲松和阿莫西林-克拉维酸MIC90虽然升高明显(≥4倍),但低于其耐药折点,细菌对其仍保持很高的敏感率。左氧氟沙星和阿奇霉素对gBLNAR菌株的MIC50和MIC90与gBLNAS菌株相差无几(≤2倍)。甲氧苄啶-磺胺甲口恶唑对gBLNAR菌株和gBLPAR菌株的MIC50和MIC90明显高于gBLNAS菌株(4倍)。除阿奇霉素和头孢曲松外,其他抗菌药物对gBLPAR菌株的MIC50和MIC90高于gBLNAS菌株(>4倍)。左氧氟沙星、阿奇霉素和甲氧苄啶-磺胺甲口恶唑对不同亚型的gBLNAR菌株的MIC50和MIC90相差无几(差别≤2倍),但β内酰胺类抗生素对gBLNAR Group Ⅲ型菌株的MIC50和MIC90高于gBLNAR Group Ⅰ/Ⅱ型菌株(≥4倍)。见表4。
表2 473株流感嗜血杆菌的基因分型
表3 流感嗜血杆菌的ftsI基因型和对氨苄西林的敏感性
表4 流感嗜血杆菌的ftsI基因型和对其他抗菌药物敏感性
continued table 4
AntimicrobialagentGenotypenMIC50/(mg/L)MIC90/(mg/L)MICRange/(mg/L)gBLNARGroupIII410.250.50.03⁃0.5gBLPAR2410.030.060.016⁃0.25Amoxicillin⁃clavulanategBLNAS740.520.06⁃8gBLNARGroupI/II113140.25⁃16gBLNARGroupIII414162⁃32gBLPAR241240.25⁃16LevofloxacingBLNAS740.0160.060.016⁃0.25gBLNARGroupI/II1130.0160.060.016⁃4gBLNARGroupIII410.0160.1250.016⁃4gBLPAR2410.0310.016⁃32AzithromycingBLNAS74120.125⁃32gBLNARGroupI/II113140.125⁃64gBLNARGroupIII41140.125⁃64gBLPAR241120.06⁃64Trimethoprim⁃sulfamethoxazolegBLNAS740.2580.125⁃32gBLNARGroupI/II1131320.125⁃128gBLNARGroupIII411320.125⁃128gBLPAR2411320.125⁃128
PBP是细菌肽聚糖层的一种特殊膜蛋白,可作为β内酰胺类抗生素的特异性结合靶位。长久以来一直认为PBP的结构改变导致其与β内酰胺类抗生素亲和力降低是引起细菌耐药的重要机制,而且这一机制主要发生在革兰阳性菌中[7-8],在革兰阴性菌中罕见[9]。近年研究发现,流感嗜血杆菌对β内酰胺类的耐药机制同样涉及PBP亲和力的下降[10-12]。在流感嗜血杆菌的各种PBP中,介导肽聚糖合成的PBP3的改变与耐药性产生密切相关,PBP3由染色体上ftsI基因编码合成,ftsI基因上不少位点的突变都可影响PBP3的空间构象及其亲和力,在抗菌药物的选择压力下,ftsI突变株可被自然选择,使β内酰胺类抗生素的活性受到不同程度的影响[1]。本研究分离到的流感嗜血杆菌,产酶株高达51.8%,说明产β内酰胺酶仍然是其主要的耐药机制,而氨苄西林的耐药率(57.9%)高于产酶率,则说明除了产β内酰胺酶外还有其他的耐药机制,如ftsI基因突变引起的PBP3改变,因为ftsI基因型筛查发现gBLNAR和gBLPACR菌株的总分离率已高达33.4%。Ubukata等[13]根据推导的氨基酸置换模式将流感嗜血杆菌分为3型:Group Ⅰ,在KTG基序附近发生Arg-517-His置换;Group Ⅱ,在KTG基序附近发生Asn-526-Lys置换;Group Ⅲ,除了KTG基序附近发生Asn-526-Lys置换外,在SSN基序还可发生Met-37-7Ile、Ser-385-Thr和(或)Leu-389-Phe置换。本研究ftsI基因分型结果发现,gBLNAR分离株以Group Ⅰ/Ⅱ型为主(113/154),68.1%(77/113)的Group Ⅰ/Ⅱ菌株对氨苄西林敏感,而85.4%的Group Ⅲ菌株对氨苄西林不敏感,与国外研究基本一致[14-19]。结果表明,ftsI基因上KTG基序的突变对PBP3的空间构象影响较小,PBP3仍对氨苄西林保持较高的亲和力;而SSN基序的突变对PBP3的空间构象影响较大,PBP3对氨苄西林亲和力明显下降。成都地区儿童呼吸道分离株的ftsI基因有哪些突变位点尚待确认。
在对其他常用抗菌药物的MIC进行分析时发现,左氧氟沙星、阿奇霉素和甲氧苄啶-磺胺甲口恶唑等非β内酰胺类抗生素对gBLNAR菌株的MIC90与gBLNAS菌株基本一致,说明ftsI基因突变对非β内酰胺类抗生素抗菌活性的影响很小;阿莫西林-克拉维酸、头孢克洛、头孢呋辛和头孢曲松等β内酰胺类抗生素对gBLNAR菌株的MIC90明显高于gBLNAS菌株,但90%以上gBLNAR菌株仍对头孢曲松保持敏感,说明ftsI基因突变对PBP3与氨基青霉素类、第二代头孢菌素的亲和力影响较大,对PBP3与第三代头孢菌素的亲和力影响相对较小;阿莫西林-克拉维酸、头孢克洛、头孢呋辛和头孢曲松等β内酰胺类抗生素对gBLNAR Group Ⅲ菌株的MIC90均高于gBLNAR Group Ⅰ/Ⅱ菌株,说明ftsI基因SSN基序的突变比KTG基序的突变更显著地降低细菌对头孢菌素的敏感性[20]。因此,对于gBLNAR和gBLPACR菌株ftsI基因突变株感染的治疗,可首选第三代头孢菌素或左氧氟沙星等其他受ftsI基因突变影响较小的抗菌药物。因此,在日常工作中快速识别这些耐药菌株非常重要[21]。
[ 1 ] Tristram S, Jacobs MR, Appelbaum PC. Antimicrobial resistance inHaemophilusinfluenzae[J]. Clin Microbiol Rev, 2007, 20(2): 368-389.
[ 2 ] Markowitz SM. Isolation of an ampicillin-resistant, non-beta-lactamase-producing strain ofHaemophilusinfluenzae[J]. Antimicrob Agents Chemother, 1980, 17(1): 80-83.
[ 3 ] Doern GV, Brueggemann AB, Pierce G, et al. Antibiotic resistance among clinical isolates ofHaemophilusinfluenzaein the United States in 1994 and 1995 and detection of beta-lactamase-positive strains resistant to amoxicillin-clavulanate: results of a national multicenter surveillance study[J]. Antimicrob Agents Chemother, 1997, 41(2): 292-297.
[ 4 ] Hasegawa K, Yamamoto K, Chiba N, et al. Diversity of ampicillin-resistance genes inHaemophilusinfluenzaein Japan and the United States[J]. Microb Drug Resist, 2003, 9(1): 39-46.
[ 5 ] Kim IS, Ki CS, Kim S, et al. Diversity of ampicillin resistance genes and antimicrobial susceptibility patterns in Haemophilus influenzae strains isolated in Korea[J]. Antimicrob Agents Chemother, 2007, 51(2): 453-460.
[ 6 ] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing [S]. Twenty-Second informational supplement, 2012,M100-S22.
[ 8 ] Krawczyk-Balska A, Popowska M, Markiewicz Z. Re-evaluation of the significance of penicillin binding protein 3 in the susceptibility ofListeriamonocytogenesto β-lactam antibiotics[J]. BMC Microbiol, 2012, 12:57.
[ 9 ] Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and beta-lactam resistance[J]. FEMS Microbiol Rev,2008,32(2): 361-385.
[10] Barbosa AR, Giufrè M, Cerquetti M, et al. Polymorphism inftsIgene and {beta}-lactam susceptibility in PortugueseHaemophilusinfluenzaestrains: clonal dissemination of beta-lactamase-positive isolates with decreased susceptibility to amoxicillin/clavulanic acid[J]. J Antimicrob Chemother, 2011, 66(4): 788-796.
[11] Witherden EA, Montgomery J, Henderson B, et al. Prevalence and genotypic characteristics of beta-lactamase-negative ampicillin-resistantHaemophilusinfluenzaein Australia[J]. J Antimicrob Chemother, 2011, 66(5): 1013-1015.
[12] San Millan A, Giufre M, Escudero JA, et al. Contribution of ROB-1 and PBP3 mutations to the resistance phenotype of a beta-lactamase positive amoxicillin clavulanic acid resistantHaemophilusinfluenzaecarrying plasmid pB1000 in Italy[J]. J Antimicrob Chemother, 2011, 66 (1): 96-99.
[13] Ubukata K, Shibasaki Y, Yamamota K, et al. Association of amino acid substitutions in penicillin binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistantHaemophilusinfluenzae[J]. Antimicrob Agents Chemother, 2001, 45(6):1693-1699.
[14] Sakai A, Hotomi M, Billal DS, et al. Evaluation of mutations in penicillin binding protein-3 gene of nontypeableHaemophilusinfluenzaeisolated from the nasopharynx of children with acute otitis media[J]. Acta Otolaryngol, 2005, 125(2): 180-183.
[15] Hotomi M, Sakai KF, Billal DS, et al. Antimicrobial resistance inHaemophilusinfluenzaeisolated from the nasopharynx among Japanese children with acute otitis media[J]. Acta Otolaryngol, 2006, 126(2): 130-137.
[16] Kishii K, Chiba N, Morozumi M, et al. Diverse mutations in theftsIgene in ampicillin-resistantHaemophilusinfluenzaeisolates from pediatric patients with acute otitis media[J]. J Infect Chemother, 2010, 16(2): 87-93.
[17] Chung KP, Huang YT, Lee LN, et al. Alarmingly decreasing rates of amoxicillin-clavulanate susceptibility among clinical isolates ofHaemophilusinfluenzaefrom 2001 to 2009 in a medical center in Taiwan[J]. J Infect, 2011, 62(2): 185-187.
[18] Takakura M, Fukuda Y, Nomura N, et al. Antibacterial susceptibility surveillance ofHaemophilusinfluenzaeisolated from pediatric patients in Gifu and Aichi prefectures (2009-2010)[J]. Jpn J Antibiot, 2012, 65(5): 305-321.
[19] Park C, Kim KH, Shin NY, et al. Genetic diversity of theftsigene in β-lactamase nonproducing ampicillin resistant and β-lactamase producing amoxicillin clavulanic acid resistant nasopharyngealHaemophilusinfluenzaestrains isolated from children in South Korea[J]. Microb Drug Resist, 2013, 19(3):224-230.
[20] García-Cobos S, Arroyo M, et al. Novel mechanisms of resistance to β-lactam antibiotics inHaemophilusparainfluenzae: β-lactamase negative ampicillin resistance and inhibitor-resistant TEM β-lactamases[J]. J Antimicrob Chemother, 2013, 68(5):1054-1059.
[21] Ubukata K. Mechanisms of beta-lactam and quinolone resistance inHaemophilusinfluenzae[J]. Nihon Rinsho, 2012, 70(2): 247-250.
Antimicrobial resistance andftsIgenotyping ofHaemophilusinfluenzaeisolates from respiratory tract in children
XIE Chengbin, WANG Pinjia, WU Yulu, YAN Yuan, YI Juan, SU Zhe
. (Department of Laboratory Medicine, Sichuan Provincial Hospital of Women and Children, Chengdu 610045, China)
Objective To investigate the relation between antimicrobial resistance andftsIgene encoding PBP3 ofHaemophilusinfluenzaeisolated from respiratory tract in children. Methods From June 2011 to September 2012,H.influenzaeisolates were collected from respiratory tract in children. Minimum inhibitory concentrations were determined by mircrobroth dilution with commonly-used antibiotics. Beta-lactamase production was detected by Nitrocefin disk test. PCR technique was employed forftsIgenotyping. Antimicrobial resistance was compared between beta-lactamase-nonproducing, ampicillin-resistant (gBLNAR) and beta-lactamase-nonproducing, ampicillin-susceptible (gBLNAS) isolates as well as between gBLNAR Group I/II and gBLNAR Group III isolates. Results Beta-lactamase was produced in 51.8% (245/473) of the isolates whileftsIgene mutation was positive in 33.4% (158/473) of the isolates. The dominant genotype of gBLNAR isolates was Group I/II type (113/154), and 68.1% of gBLNAR Group I/II isolates were susceptible to ampicillin (77/113) whereas 85.4% of gBLNAR Group III isolates were non-susceptible to ampicillin (35/41). MIC90and resistance rate of gBLNAR isolates were higher than those of gBLNAS isolates for cefaclor, cefuroxime, ceftriaxone and amoxicillin-clavulanate (P<0.01), and similar to those of gBLNAS isolates for levofloxacin, azithromycin and trimethoprim-sulfamethoxazole (P>0.05). MIC90and resistance rate of gBLNAR Group III isolates were higher than those of gBLNAR Group I/II isolates for those beta-lactams mentioned previously (P<0.01), but no difference was observed among gBLNAR isolates for non-beta-lactam antibiotics. Conclusions High prevalence offtsIgene mutation is identified in theH.influenzaeisolates from respiratory tract in Chengdu children, predominantly the gBLNAR Group I/II type isolates, which is associated with altered susceptibility to aminopenicillins and some second generation cephalosporins.
Haemophilusinfluenzae; antimicrobial resistance;ftsIgene
四川省卫生厅科研课题(120493,130246)。
1. 四川省妇幼保健院检验科,成都 610045; 2. 成都医学院检验医学院。
谢成彬(1977—),男,硕士,主管技师,主要从事细菌耐药机制和医院感染分子流行病学研究。
王频佳,E-mail:619364947@qq.com。
R378.4
A
1009-7708(2015)04-0324-06
2013-10-09
2014-12-15