抗干扰AC/DC开关电源芯片的研究与设计

2015-04-16 02:37
电气传动自动化 2015年2期
关键词:恒压电源芯片

杜 斌

(桂林长海发展有限责任公司军工事业部发射室,广西 桂林 541000)

1 引言

AC/DC开关电源转换器以其价格、效率、体积等优势在小功率电源领域得到了广泛应用,电脑、显示器、路由器、移动设备都离不开AC/DC开关电源[1]。经过数十年的发展,开关电源的功率、工作频率等都大幅提升,但是由于电源中的电流和电压不能突变,交替过程中会产生功率损耗。研究表明,此损耗与频率成线性关系,因此电源工作频率越高,损耗也就更大。

近年来,随着新能源技术的飞速发展,研发一种高效节能、使用年限长的电源芯片势在必行[2]。从需求来看,电源发展趋于智能化、集成化、数字化、微型化、高频化等方向[3]。本文基于AC/DC开关电源转换器的工作原理,设计了一种PFM型恒流恒压模式抗干扰AC/DC适配器。设计中发现误差放大器对整个电源芯片的精度影响很大,据此提出一种组合式的误差放大器,设置两条不同增益的误差放大电流,分别为40倍和400倍,将轻载到满载的电压输出降低到40mV。减少了LEB结束与开关断开的时间差,提高安全性能。经过试验测量,发现本电源芯片抗ESD能力达到10kV,性能稳定。

2 AD/DC开关电源工作原理

AC/DC开关电源输入信号为低频交流电压,输出信号为直流电压和电流,中间的转换过程通过整流电路和滤波器完成。由于开关电源极易受到干扰,一般都是隔离放置。电路内部还需要升压装置,故器件本身体积较大。

AD/DC 开关电源工作原理是[4]:交流信号首先经过桥式整流器和PFC功率校正器,在经过EMI滤波器变成类直流信号,随后经过升压装置进行耦合传输,开关导管完成信号输出。开关电源一次传递的能量由PFM控制开关的占空比确定,在输出端完成整流后实现AC/DC转换。其电路结构示意图如图1所示。

图1 AC/DC开关电源电路结构

上述系统一般通过光耦合将输出的电压信号反馈给电源芯片,图1中的电压信号以原边反馈形式输出。电源芯片负责求出参考电压信号与反馈电源信号的误差,并通过误差放大器将其放大。此误差为控制系统工作频率和脉冲宽度的信号,直接决定占空比和传递能量的大小。

根据本文的相关要求,初步设置电流误差不超过10%,电压误差不超过5%,输出恒压电压的波动值小于0.2V,电源转换效率不低于70%,电磁干扰裕量设置为6dB,抗ESD能力达到8kV以上。选用PFM型恒流恒压模式抗干扰AC/DC适配器,芯片内部系统框架如图2所示。

图2 电源芯片内部系统框架

3 芯片重要模块电路研究

芯片中至关重要的模块就是带隙基准电压源,其作为整个电路原始电压参考值,影响着整个系统的性能[5]。带隙基准电压源电路稳定后才能提供参考电压Vref,此电路的电压由VCC提供,变化范围在9V-18V,工作环境欠佳。本文对其进行改进,将VCC的电压降低到 6V,再通过高压管给芯片带隙基准电压源供电,这样可以使电压源较为稳定。改进之后,芯片核心电路不在需要高压管,会节省其体积并降低制造成本。

低压线性差稳压源可以给芯片内部电路供电,并供给一些偏置装置。一般情况下,低压线性差稳压源的供电能力要不低于2mA,此为电路的满载电流。电流过低,低压线性差稳压源的电压将会降低,导致电路无法工作。

误差放大器可以提高输出电压精度,其系统电路如图3所示。

图3 误差放大器电路

传统放大器的输出电压为:

式中:VH为误差放大器的正端电位,V;Vref为误差放大器的负端电位,V;gm为跨导,S;R0为上电阻,Ω;VDC是DC端的电位,V。

为了增大芯片的控制范围,将输出电压的范围设置为1V-5V,重载时的输出电压取1V,轻载时取5V。将其进行折算,得到的输出电压偏差为:

式中:R1为下电阻,Ω;NS、Naux为电感,见图 3。

说明传统芯片轻载与满载变化过程会出现0.2V的电压差。为了克服这个问题,提出一种复合放大电路,其包含快、慢两条增益电路。在负载迅速变化时,快速通路作用;当系统接近稳定时,慢速通路作用。这样两个增益通路共同作用实现了电源芯片的高精度输出,从而保证了系统的稳定性。改进的误差放大器电路如图4所示。

图4 改进的误差放大器电路图

4 芯片系统测试

对AC/DC开关电源转换器芯片各个部分进行设计之后,最终得到的电源芯片含有5个pin脚,其典型应用电路连接如图5所示。

由图5可以看出,整个芯片所需要的电量都是由电容C提供。OUT是输出脚,可以控制开关管的连接与断开。对芯片系统进行测试,结果如表1所示。

为了满足不同国家的需求,芯片系统电压选择了90V和264V两种初始条件。从表1中的数据分析,线损补偿大约为10%,基本接近设计目标9%。整个系统补偿过程为类似线性补偿,最大波纹出现在电流为1050mA时,为160mV,小于200mV的设计值。系统的转换效率约为74%,达到高效的要求。电源芯片抗干扰裕量为7.6dB,大于设计值6dB。气隙放电模式的系统能抵抗10kV的ESD干扰。经测试,本芯片系统满足各项设计指标。

图5 电源芯片典型应用电路连接

表1 芯片系统板端实验数据

5 结束语

随着新能源技术的飞速发展,研发一种高效节能、使用寿命长的电源芯片势在必行。本文基于AC/DC开关电源转换器的工作原理,设计了一种PFM型恒流恒压模式抗干扰AC/DC适配器。讨论了带隙基准电压源、低压线性差稳压源、误差放大器等模块。设计中发现误差放大器对整个电源芯片的精度影响很大,据此提出一种组合式的误差放大器,设置两条不同增益的误差放大电流,分别为40倍和400倍,将轻载到满载的电压输出降低到40mV。减少了LEB结束与开关断开的时间差,提高了安全性能。经过试验测量,发现本电源芯片抗ESD能力达到10kV,最大波纹为160mV,电源芯片抗干扰裕量为7.6dB,且性能稳定。希望为今后AC/DC开关电源转换器的设计制造提供帮助。

[1]邹爱萍.Buck型DCDC开关电源芯片工作原理分析[J].电源技术应用,2013,05:125-126.

[2]许 幸,何杞鑫,王 英.新型高效同步整流式DC-DC开关电源芯片的设计[J].电子器件,2006,03:643-646.

[4]常昌远,姚建楠,谭春玲,等.一种PWM/PFM自动切换的 DC-DC 芯片[J].应用科学学报,2007,04:433-436.

[5]应建华,张姣阳,方 超.AC/DC开关电源中温度补偿电流源的设计[J].半导体技术,2007,11:980-983.

[6]周浬皋,李冬梅.一种高动态性能数字DC-DC算法建模与芯片设计[J].电子器件,2010,04:399-402.

猜你喜欢
恒压电源芯片
芯片会议
关于射频前端芯片研发与管理模式的思考
Cool Invention炫酷发明
如何更好设计锂电池充电器恒压控制电路
如何更好设计锂电池充电器恒压控制电路
基于恒压频比的交流异步电机调速研究
双馈风机孤岛模式下恒压恒频运行控制策略
基于模糊控制的恒压供水系统的研究
哪一款移动电源充电更多?更快?
多通道采样芯片ADS8556在光伏并网中的应用