李婷,王安平,母义明
解放军总医院 内分泌科,北京 100853
自1995 年被首次发现以来,脂联素的相关研究极大地改变了我们对脂肪组织的认识,提升了把脂肪组织作为一个内分泌器官看待的重要性[1-2]。作为脂肪分泌的一种30 kD 大小的C1q 相关蛋白,脂联素最初被命名为Acrp30。脂联素由脂肪细胞特异性分泌,它对外周组织有很强的胰岛素增敏作用,以及降低葡萄糖和促进脂质分解的功能。尽管脂联素受体(AdipoR)最初被描述为骨骼肌特异性表达的AdipoR1和肝脏特异性表达的AdipoR2[3],但受体相对而言还是无处不在的。
红外标记示踪研究揭示了脂联素在肝脏、心脏、肾脏的作用靶点,可视化免疫荧光技术发现内分泌胰腺有全长脂联素的结合位点[4-5]。脂联素是指示代谢健康的杰出临床标志物。观察到肥胖病人循环内脂联素水平降低的同时,为了研究脂联素在中枢及外周代谢平衡中的作用,大量临床前模型已经建立起来[6-9]。在这里,我们特别针对脂联素调节肝脏糖脂代谢的作用进行阐述。
脂联素在循环中有3 种存在形式,即三聚体、低分子量多聚体和高分子量多聚体。循环中的脂联素水平与肥胖呈负相关,作为炎症介质影响脂联素的生产和释放。一些抵抗糖尿病的治疗能够改善循环中脂联素的水平,包括噻唑烷二酮类药物(TZDPPARγ 激动剂)、碱性成纤维细胞生长因子21(FGF21)、抗炎化合物,并能降低体重。值得注意的是,TZD[10-11]或FGF21[12-13]的降血糖作用必须依靠脂联素的表达。脂联素中的高分子量多聚体是临床上观察TZD 药效的最佳分子标记物[14],同时在应用FGF21 的治疗中能显著增加[15]。此外,饮食和锻炼,作为治疗糖尿病的一线方案,都可以独立提高循环中的脂联素水平[16-17]。锻炼还可通过上调AdipoR 表达来上调脂联素作用[18]。总的来说,文献表明针对脂联素的生产或脂联素信号转导来预防或治疗肥胖相关的代谢紊乱很有发展潜力的。
肝脏在碳水化合物、脂质、氨基酸代谢和必需蛋白质合成过程中扮演重用角色。在慢性营养过剩的情况下,肝脏将出现过量的脂质沉积(脂肪变性)和胰岛素抵抗。肝脏疾病可由一系列因素引起,包括遗传因素、异味的脂质沉积和病毒感染。脂肪肝是发生频率最高的慢性肝脏疾病之一。根据酒精对疾病的贡献程度可将脂肪肝分为2 类,即非酒精性脂肪肝(NAFLD)和酒精性脂肪肝(ALD)。NAFLD 在工业性国家影响着约三分之一的人口,其特点是过量的甘油三酯沉积,肝细胞内有可见的脂肪微粒[19]。
脂联素能给肝脏提供很多保护,通过改善脂联素信号通路能改善相关代谢。临床数据提示NAFLD 的发展与胰岛素抵抗相关,大多数病人都患有超重、肥胖、血脂障碍和高血压。即使在正常胰岛素耐量的正常体重患者中,NAFLD 与胰岛素抵抗、高胰岛素血症之间仍然有联系[20]。然而,脂肪变性和胰岛素抵抗之间的因果联系仍然有争议,特别是在一些有遗传倾向的人群中。肥胖相关的脂联素下调可能导致胰岛素抵抗和糖尿病发生。临床上,脂联素已被证明与肥胖及NAFLD 呈负相关,现在大量针对脂肪肝的治疗都能提高脂联素的水平。除了其强大的胰岛素增敏作用,脂联素还能降低肝葡萄糖生产,增加肝脏脂肪酸氧化,降低炎症,促进肝细胞的存活和减少纤维化。毫不奇怪,NAFLD 患者显著降低血浆脂联素水平与胰岛素抵抗[21-22]。
膳食中的脂质代谢主要在肠道,在那里被分解合成甘油三酯(TG),然后重新包装成乳糜微粒胆固醇和蛋白质。乳糜微粒是小肠分泌的脂蛋白颗粒,它的功能是把外源性脂质从血液中运输到肝脏,在肝脏可以被重新包装成脂蛋白颗粒。
作为脂蛋白到达靶组织,TG 被脂蛋白脂肪酶水解生成甘油和游离脂肪酸(FFA),然后作为能量来源进入细胞,或者作为细胞膜脂质合成的物质。FFA 通过反酯化再形成TG,从而使得多余的脂质在靶组织沉积。当机体需要能量时,存储的TG可以通过脂解作用再分解成FFA。
肝脂肪变性的特点是TG积累,肝细胞中有脂滴沉积。对肝脂肪变性的临床定义是TG含量>55 mg/g,>5%肝细胞可见脂滴[19]。外源性脂类导致的高循环FFA以及外周组织对肝脏的信号均可增加脂质的摄取,减少极低密度脂蛋白。肝细胞脂质过载可损害线粒体功能[23]。
临床前模型提示我们脂联素在维护肝脏脂质代谢中的作用。脂联素基因敲除小鼠高脂饲养48 周后[24],肝脂肪性肝炎和腺瘤高发,但对短期的饮食干预[25-26]没有明显反应。在瘦素敲除小鼠体内让脂联素基因沉默,将进一步加剧TG 的积累[12]。相反,脂联素过表达模型能防治TG的沉积,并且降低有害的脂质代谢产物甘油二酯或神经酰胺[9,27]。类似效果同样出现在其他高脂联素血症的转基因小鼠,继发脂肪细胞线粒体的功能变化,它们发生难治性的TG、甘油二酯或神经酰胺的积累[28]。在啮齿类动物中有关优化脂质代谢的试验结果显示,重组脂联素的干预能增加肌肉和肝脏中的脂质清除和脂肪酸氧化[29-30]。一些研究团队也证明在啮齿类动物的慢性乙醇实验能降低循环脂联素浓度[30-32]。腺病毒介导的脂联素过表达能减轻肝肿大、肝脏脂肪变性和慢性乙醇实验中小鼠的肝损失[30]。
脂联素通过减少FFA 流入肝脏、增加FFA 氧化和线粒体生物合成来抑制肝脏脂肪变性[24]。AdipoR基因调控的研究表明类似趋势,脂联素基因单核苷酸多态性受体是与肝TG 积累甚至肝硬化风险显著相关的[33-34]。在小鼠肝脂肪变性模型中也观察到AdipoR2 表达的减少[35]。AdipoR 的表达从反面表明了脂联素信号转导和肝脏脂肪变性之间潜在的因果关系[36]。腺病毒介导的任何一个AdipoR的过度表达都足以刺激脂质氧化、减少肝脏TG 含量[37]。相反,缺乏AdipoR 的小鼠显示肝脏TG 蓄积增强。总之,低血浆脂联素水平和肝脏低AdipoR2 水平的联合效应可能会促进肝脏发生脂肪变性。
在ALD 情况下,慢性乙醇暴露被认为是导致肝脏脂肪合成增强的原因,抑制转录因子如AMPK、SIRT1、PGC-1α、PPARα和SREBP-1 等会导致脂肪酸氧化受损[31]。脂联素与其受体结合能激活类似途径,AdipoR 最初被证实能上调AMPK 和PPARα[38]。反过来,AMPK 在通过乙酰辅酶A 羧化酶调节脂肪酸氧化速率,随后肉碱棕榈酰转移酶-1(CPT-1)的激活促进线粒体吸收脂肪酸(增加β氧化)这一过程中起关键作用。此外,AMPK 和SIRT1 可提高PGC-1α并降低其乙酰化,促进线粒体生物合成,从而增强脂质氧化能力[39]。脂联素的其他抗脂毒性似乎是通过调节PPARα的转录产生的,包括脂质合成酶减少、CPT-1增加、高密度脂蛋白分泌与合成增加[40]。
神经酰胺是由鞘氨醇骨干脂类和脂肪酸组成的脂质家族。首先,丝氨酸和棕榈酰CoA 形成18 碳骨架,然后通过一系列酶促反应形成神经酰胺。神经酰胺可通过抑制胰岛素中央信号Akt 来降低胰岛素的作用[41],因此,细胞内高水平的神经酰胺与营养吸收减少、胰岛素敏感性下降和细胞凋亡增加有关。神经酰胺经神经酰胺酶发生去乙酰化释放出鞘氨醇和FFA。一旦神经酰胺转化为鞘氨醇,就会被鞘氨醇激酶磷酸化生成1-磷酸鞘氨醇(S1P)[5,41]。已知S1P 与神经酰胺的作用相反,它可以促进细胞的存活,改善胰岛素敏感性,减少炎症。因此,神经酰胺和S1P 的相对比例对于细胞存活及其胰岛素敏感性是至关重要的。因而,在维持代谢平衡的过程中,调节神经酰胺的代谢是必不可少的。显然,脂联素与S1P 在改善代谢方面的效应有很大一部分重叠,因此提出了一种可能性:脂联素可以通过对神经酰胺的轴的影响发挥其活性。
神经酰胺的代谢调控与脂肪摄入量的增加、炎症上调及脂联素下调都密切相关[42]。脂质代谢产物的积累会出现由脂联素诱导的脂质过氧化损伤[43]。用不同的脂联素小鼠模型实验,发现脂联素的基因剂量与高脂饮食诱导后肝脏内神经酰胺含量呈负相关[5]。过表达任何一种AdipoR 异构体均能减少肝神经酰胺的积累和提高神经酰胺酶的活性。在细胞培养实验中,利用基因上调或下调AdipoR,进一步阐明脂联素通过其受体介导诱导神经酰胺酶活性的作用。研究表明,这类受体与神经酰胺活性的不同系统联系是支持上述观点的[44-45]。这些受体传导的神经酰胺酶活性可以被脂联素进一步提高,在下调神经酰胺的同时增加S1P。总的来说,这些数据显示,AdipoR1和2的活化上调了神经酰胺酶活性,最终促进S1P 产生[5,47]。在此过程中产生的鞘氨醇和S1P 可能足以激活PPARα和AMPK 这些脂联素信号下游介质。S1P 足以诱导AMPK 磷酸化[5],和鞘氨醇已被报道为PPARα的配体[46]。在脂质氧化时,神经酰胺可损伤脂质氧化,通过激活蛋白磷酸酶2A 促进AMPK 失活[47-48]。在体外肝细胞中发现酒精依赖神经酰胺性下调AMPK 活性,可能是脂肪肝疾病相关的病因[47]。此外,神经酰胺在ALD 的啮齿类动物模型中持续升高[49-52],并且可以通过丙咪嗪、伏马菌素B1、神经磷脂酶抑制剂或直接从源头针对性降低神经酰胺的合成,使神经酰胺下调[47]。
局部或全身上调S1P 可表达脂联素的抗凋亡作用,因此S1P 足以概括脂联素在心肌细胞和胰岛B细胞的保护作用。换言之,脂联素能通过AdipoR 介导的增加神经酰胺酶活性而降低神经酰胺的含量,防止细胞凋亡,即驱动神经酰胺/S1P 变阻器对S1P介导的存活和增殖。组织都处于死亡与生存、增殖与更新的不断平衡之间,对于几个特定组织而言,脂联素对细胞生存和自我更新起关键作用[5,53]。脂联素敲除小鼠行肝部分切除术,肝脏再生能力受损[54],S1P生产对恢复中的促有丝分裂行为至关重要[55]。
究竟是什么推动了从单纯性脂肪肝到脂肪性肝炎的过渡仍不清楚,有可能是由过渡脂毒性所连接的[56]。脂毒性描述的是脂质沉积于脂肪组织以外的组织所产生的后果——细胞功能障碍或凋亡[57-58]。当肝细胞内TG的存储超过上限值,积累的脂质会损害细胞的功能并促进细胞凋亡。随着功能性肝细胞的损失和凋亡,炎性细胞因子和各种应激信号也被释放,因此在细胞周围创造了一个毒性的环境。这种毒性可以触发细胞防御和修复机制,包括肝纤维化和细胞凋亡[59]。
Toll 样受体4(TLR4)可以作为一个异常脂质稳态后果而被激活。研究表明,饱和脂肪酸可以间接激活TLR4信号,启动炎症反应和神经酰胺合成酶的生产[60]。直接和间接激活TLR4 均能激活下游NFκB 信号通路。这一活化过程会增加促炎性细胞因子的生产和上调神经酰胺[61]。神经酰胺本身也通过激活IKKb 诱导剂和Jun 氨基末端激酶(JNK)参与炎症通路[62]。在急性炎症反应中,促炎性细胞因子有一个短暂的半衰期,从而限制炎症反应持续时间。为了严格控制炎症反应,抗炎性细胞因子能够对抗免疫激活和抑制促炎性细胞因子的激活。这种调节伴随着巨噬细胞介导的死细胞的去除,从而终止炎症信号源[63]。
有报道称,用巨噬细胞样细胞系,球形脂联素可以使TLR4 介导的信号通路正常化[64]。一组采用原代Kupffer 细胞的实验也表明脂联素具有脂多糖脱敏和抗炎作用[65]。总的来说,脂联素通过激活NFκB 信号、减少促炎反应、减少组织中神经酰胺的积累来发挥抗炎作用。
有几个实验室研究了脂联素对糖脂代谢的影响。Berg等报道,在野生型小鼠和糖尿病小鼠中,分别用2 倍和5 倍正常循环水平的脂联素可以降低血糖[66]。在高脂饲料条件下,脂联素基因敲除小鼠出现葡萄糖耐量抵抗和严重的肝胰岛素抵抗,而不是肌肉胰岛素抵抗[10]。在胰岛素钳夹研究中,发现注射纯化的重组脂联素可改善胰岛素的作用[5,66]。不论是WT 还是ob/ob 背景的小鼠,葡萄糖钳夹实验中脂联素影响体内的葡萄糖代谢归因于葡萄糖生产速度降低65%。脂联素没有影响葡萄糖摄取、糖酵解率或糖原合成,相反,在循环脂联素水平急性升高时能降低肝葡萄糖生产,但对于肌肉葡萄糖的摄取没有影响。这进一步证明肝脏糖异生酶如磷酸烯醇式丙酮酸羧激酶和葡萄糖-6-磷酸酶的表达,脂联素输液能使其mRNA 降低50%以上,表明循环中脂联素水平的温和上升可以抑制肝脏糖异生酶的表达和内源性葡萄糖生成率。然而,这些降血糖作用与观察到的胰岛素上升不一致,暗示它的影响主要是胰岛素灵敏度。与这些啮齿类动物的研究一致,空腹脂联素水平与人类胰岛素敏感性强烈相关[67]。
脂联素增强胰岛素敏感性的机制长期被认为是受体介导的,激活AMPK 通路,刺激葡萄糖的利用率和脂肪酸氧化[10,68]。然而,最近的报道也揭示了不依赖于AMPK 的机制[5,69]。诱导下调肝脏中的AMPK/LKB1 信号通路,脂联素仍能有效改善葡萄糖稳态。受体介导的神经酰胺酶活性是脂联素在肝脏和其他组织产生影响的一个主要信号机制。虽然神经酰胺酶能激活AMPK,但AMPK 信号通路并不是脂联素促进神经酰胺酶激活、下调神经酰胺所必需的[5]。Miller等认为,在高胰岛素-正常血糖钳夹技术中,即使缺乏LKB1/AMPK信号通路的情况下,脂联素仍然可以减少糖异生基因的表达和促进胰岛素诱导的肝葡萄糖释放[69]。
暴露于过量循环饱和脂类[30,73]、糖皮质激素[30,70]、膳食脂肪[71,72],或经常过度消耗营养物质(由于瘦素缺乏),可增加肝神经酰胺在动物模型中的积累,这些与肝胰岛素抵抗有关[5,12,30,73]。值得注意的是,靶向抑制神经酰胺合成可使肝神经酰胺正常化,恢复胰岛素在这些模型中抑制肝葡萄糖输出的能力。脂联素介导改善肝胰岛素作用,所需时间与使ob/ob小鼠肝脏中神经酰胺的水平正常化一致[5]。虽然神经酰胺可在肥胖的胰岛素抵抗人群的肝脏中积累[50],在肝脏胰岛素抵抗中,神经酰胺的具体作用是作为标志物还是胰岛素抵抗的原因,仍存在争论[74]。
流行病学研究表明脂联素和胰岛素敏感性有较强的相关性,两者与肥胖紧密相关[75]。与胰岛素抵抗相关的脂联素及其受体的几种遗传多态性已确定。与鞘脂类有关的一个单核苷酸多态性,其生产需要饱和脂肪,AdipoR1 的多态性积极响应了饱和脂肪酸引起的胰岛素抵抗[76]。
上调循环中的脂联素,与胰岛素增敏剂的临床疗效密切相关。值得注意的是,PPARγ激动剂TZD与脂联素诱导密切相关。在临床前模型中,脂联素是低剂量TZD改善高血糖所必需的[10-11]。在人类中,TZD 诱导的改善糖质新生的作用与循环脂联素增加密切相关[77]。脂联素的高分子量形式是TZD 药物改善葡萄糖稳态的最佳预测[78],脂联素高分子量水平比总脂联素水平能更好地反应与胰岛素敏感性的相关性[79]。另一个很有前途的胰岛素增敏剂,FGF21,最近也作为潜在的可改善胰岛素抵抗的治疗药物出现。FGF21 是PPARα(肝)或PPARγ(脂肪)的一个靶蛋白,它在啮齿类动物[80-81]和人类[15]都能增加血浆中的脂联素含量,并且大部分抗糖尿病的作用是需要脂联素来完成的[12-13]。
[1]Kershaw E E,Flier J S.Adipose tissue as an endocrine organ[J].J Clin Endocrinol Metab,2004;89:2548-2556.
[2]Scherer P E,Williams S,Fogliano M,et al.A novel serum protein similar to C1q,produced exclusively in adipocytes[J].J Biol Chem,1995,270:26746-26749.
[3]Kadowaki T,Yamauchi T,Kubota N,et al.Adiponectin and adiponectin receptors in insulin resistance,diabetes,and the metabolic syndrome[J].J Clin Invest,2006,116:1784-1792.
[4]Halberg N,Schraw T D,Wang Z V,et al.Systemic fate of the adipocyte-derived factor adiponectin[J].Diabetes,2009,58:1961-1970.
[5]Holland W L,Miller R A,Wang Z V,et al.Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin[J].Nat Med,2011,17:55-63.
[6]Yamauchi T,Kamon J,Waki H,et al.Globular adiponectin Protected ob/ob mice from diabetes and ApoE-deficient mice from Atherosclerosis[J].J Biol Chem,2003,278:2461-2468.
[7]Cong L,Chen K,Li J,et al.Regulation of adiponectin and leptin secretion and expression by insulin through a PI3KPDE3B dependent mechanism in rat primary adipocytes[J].Biochem J,2007,403:519-525.
[8]Wang Z V,Schraw T D,Kim J Y,et al.Secretion of the adipocyte-specific secretory protein adiponectin critically depends on thiol-mediated protein retention[J].Mol Cell Biol,2007,27:3716-3731.
[9]Kim J Y,van de Wall E,Laplante M,et al.Obesity-associated improvements in metabolic profile through expansion of adipose tissue[J].J Clin Invest,2007,117:2621-2637.
[10]Nawrocki A R,Rajala M W,Tomas E,et al.Mice lacking adiponectin showdecreased hepatic insulin sensitivityand reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists[J].J Biol Chem,2006,281:2654-2660.
[11]Kubota N,Terauchi Y,Kubota T,et al.Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin dependent and independent pathways[J].J Biol Chem,2006,281:8748-8755.
[12]Holland W L,Adams A C,Brozinick J T,et al.An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice[J].Cell Metab,2013,17:790-797.
[13]Lin Z,Tian H,Lam K S,et al.Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice[J].Cell Metab,2013,17:779-789.
[14]Combs T P,Wagner J A,Berger J,et al.Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists:a potential mechanism of insulin sensitization[J].Endocrinology,2002,143:998-1007.
[15]Gaich G,Chien J Y,Fu H,et al.The effects of LY2405319,an FGF21 analog,in obese human subjects with type 2 diabetes[J].Cell Metab,2013,18:333-340.
[16]Kriketos A D,Gan S K,Poynten A M,et al.Exercise increases adiponectin levels and insulin sensitivity in humans[J].Diabetes Care,2004,27:629-630.
[17]Weiss E P,Racette S B,Villareal D T,et al.Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake:a randomized controlled trial[J].Am J Clin Nutr,2006,84:1033-1042.
[18]Christiansen T,Paulsen S K,Bruun J M,et al.Diet-induced weight loss and exercise alone and in combination enhance the expression of adiponectin receptors in adipose tissue and skeletal muscle,but only diet-induced weight loss enhanced circulating adiponectin[J].J Clin Endocrinol Metab,2010,95:911-919.
[19]Cohen J C,Horton J D,Hobbs H H.Human fatty liver disease:old questions and new insights[J].Science,2011,332:1519-1523.
[20]Marchesini G,Brizi M,Morselli-Labate A M,et al.Association of nonalcoholic fatty liver disease with insulin resistance[J].Am J Med,1999,107:450-455.
[21]Buechler C,Wanninger J,Neumeier M.Adiponectin,a key adipokine in obesity related liver diseases[J].World J Gastroenterol,2011,17:2801-2811.
[22]Pagano C,Soardo G,Esposito W,et al.Plasma adiponectin is decreased in nonalcoholic fatty liver disease[J].Eur J Endocrinol,2005,152:113-118.
[23]Parekh S,Anania F A.Abnormal lipid and glucose metabolism in obesity:implications for nonalcoholic fatty liver disease[J].Gastroenterology,2007,132:2191-2207.
[24]Asano T,Watanabe K,Kubota N,et al.Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis[J].J Gastroenterol Hepatol,2009,24:1669-1676.
[25]Yano W,Kubota N,Itoh S,et al.Molecular mechanism of moderate insulin resistance in adiponectin-knockout mice[J].Endocr J,2008,55:515-522.
[26]Liu Q,Yuan B,Lo K A,et al.Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism[J].Proc Natl Acad Sci USA,2012,109:14568-14573.
[27]Holland W L,Brozinick J T,Wang L P,et al.Inhibition of ceramide synthesis ameliorates glucocorticoid-,saturated-fat-,and obesity-induced insulin resistance[J].Cell Metab,2007,5:167-179.
[28]Kusminski C M,Holland W L,Sun K,et al.MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity[J].Nat Med 2012,18:1539-1549.
[29]Yamauchi T,Kamon J,Waki H,et al.The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J].Nat Med,2001,7:941-946.
[30]Xu A,Wang Y,Keshaw H,et al.The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice[J].J Clin Invest,2003,112:91-100.
[31]Rogers C Q,Ajmo J M,You M.Adiponectin and alcoholic fatty liver disease[J].IUBMB Life,2008,60:790-797.
[32]You M,Considine R V,Leone T C,et al.Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice[J].Hepatology,2005,42:568-577.
[33]Kotronen A,Yki-Jarvinen H,Aminoff A,et al.Genetic variation in the ADIPOR2 gene is associated with liver fat content and its surrogate markers in three independent cohorts[J].Eur J Endocrinol,2009,160:593-602.
[34]Stefan N,Machicao F,Staiger H,et al.Polymorphisms in the gene encoding adiponectin receptor 1 are associated with insulin resistance and high liver fat[J].Diabetologia,2005,48:2282-2291.
[35]Matsunami T,Sato Y,Ariga S,et al.Regulation of synthesis and oxidation of fatty acids by adiponectin receptors(AdipoR1/R2)and insulin receptor substrate isoforms(IRS-1/-2)of the liver in a nonalcoholic steatohepatitis animal model[J].Metab Clin Exp,2011,60:805-814.
[36]Asterholm I W,Scherer P E.Enhanced metabolic flexibility associated with elevated adiponectin levels[J].Am J Pathol,2010,176:1364-1376.
[37]Yamauchi T,Nio Y,Maki T,et al.Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions[J].Nat Med,2007,13:332-5339.
[38]Yamauchi T,Kamon J,Ito Y,et al.Cloning of adiponectin receptors that mediate antidiabetic metabolic effects[J].Nature,2003,423:762-769.
[39]Iwabu M,Yamauchi T,Okada-Iwabu M,et al.Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2t)and AMPK/SIRT1[J].Nature,2010,464(7293):1313-1319.
[40]Yoon M.The role of PPARalpha in lipid metabolism and obesity:focusing on the effects of estrogen on PPARalpha actions[J].Pharmacol Res,2009,60(3):151-159.
[41]Bikman B T,Summers S A.Ceramides asmodulatorsof cellular andwhole-bodymetabolism[J].J Clin Invest,2011,121:4222-4230.
[42]Unger R H,Scherer P E,Holland W L.Dichotomous roles of leptin and adiponectin as enforcers against lipotoxicity during feast and famine[J].Mol Biol Cell,2013,24:3011-3015.
[43]Mullen K L,Pritchard J,Ritchie I,et al.Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats[J].Am J Physiol Regul Integr Comp Physiol,2009,296:R243-251.
[44]Kupchak B R,Garitaonandia I,Villa N Y,et al.Antagonism of human adiponectin receptors and their membrane progesterone receptor paralogs by TNFalpha and a ceramidase inhibitor[J].Biochemistry,2009,48:5504-5506.
[45]Villa N Y,Kupchak B R,Garitaonandia I,et al.Sphingolipids function as downstream effectors of a fungal PAQR[J].Mol Pharmacol,2009,75:866-875.
[46]Van Veldhoven P P,Mannaerts G P,Declercq P,et al.Do sphingoid bases interact with the peroxisome proliferator activated receptor alpha(PPAR-alpha)[J]? Cell Signal,2000,12:475-479.
[47]Liangpunsakul S,Sozio M S,Shin E,et al.Inhibitory effect of ethanol on AMPK phosphorylation is mediated in part through elevated ceramide levels[J].Am J Physiol Gastrointest Liver Physiol,2010,298:G1004-1012.
[48]Supakul R,Liangpunsakul S.Alcoholic-induced hepatic steatosis-role of ceramide and protein phosphatase 2A[J].Transl Res J Lab Clin Med,2011,158:77-81.
[49]Carr R M,Dhir R,Yin X,et al.Temporal effects of ethanol consumption on energy homeostasis,hepatic steatosis,and insulin sensitivity in mice[J].Alcohol Clin Exp Res,2013,37:1091-1099.
[50]Ramirez T,Longato L,Dostalek M,et al.Insulin resistance,ceramide accumulation and endoplasmic reticulum stress in experimental chronic alcohol-induced steatohepatitis[J].Alcohol Alcohol,2013,48:39-52.
[51]Clugston R D,Jiang H,Lee M X,et al.Altered hepatic lipid metabolism in C57BL/6 mice fed alcohol:a targeted lipidomic and gene expression study[J].J Lipid Res,2011,52:2021-2031.
[52]Ramirez T,Tong M,Chen W C,et al.Chronic alcohol-induced hepatic insulin resistance and endoplasmic reticulum stress ameliorated by peroxisome-proliferator activated receptor-delta agonist treatment[J].J Gastroenterol Hepatol,2013,28:179-187.
[53]Rutkowski J M,Wang Z V,Park A S,et al.Adiponectin promotes functional recovery after podocyte ablation[J].J Am Soc Nephrol,2013,24:268-282.
[54]Ezaki H,Yoshida Y,Saji Y,et al.Delayed liver regeneration after partial hepatectomy in adiponectin knockout mice[J].Biochem Biophys Res Commun,2009,378:68-72.
[55]Zabielski P,Baranowski M,Blachnio-Zabielska A,et al.The effect of high-fat diet on the sphingolipid pathway of signal transduction in regenerating rat liver[J].Prostaglandins Other Lipid Mediat,2010,93:75-83.
[56]Bataller R,Rombouts K,Altamirano J,et al.Fibrosis in alcoholic and nonalcoholic steatohepatitis[J].Best Pract Res Clin Gastroenterol,2011,25:231-244.
[57]Schaffer J E.Lipotoxicity:when tissues overeat[J].Curr Opin Lipidol,2003,14:281-287.
[58]Unger R H.Lipotoxic diseases[J].Annu Rev Med,2002,53:319-336.
[59]Unger R H,Clark G O,Scherer P E,et al.Lipid homeostasis,lipotoxicity and the metabolic syndrome[J].Biochim Biophys Acta,2010,1801:209-214.
[60]Holland W L,Bikman B T,Wang L P,et al.Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice[J].J Clin Invest,2011,121:1858-1870.
[61]Baker R G,Hayden M S,Ghosh S.NF-kB,inflammation,and metabolic disease[J].Cell Metab,2011,13:11-22.
[62]Ruvolo P P.Intracellular signal transduction pathways activated by ceramide and its metabolites[J].Pharmacol Res,2003,47:383-392.
[63]Chawla A,Nguyen K D,Goh Y P S.Macrophage-mediated inflammation in metabolic disease[J].Nat Rev Immunol,2011,11:738-749.
[64]Huang H,Park P H,McMullen M R,et al.Mechanisms for the anti-inflammatory effects of adiponectin in macrophages[J].J Gastroenterol Hepatol,2008,23:S50-S53.
[65]Mandal P,Park P H,McMullen M R,et al.The anti-inflammatory effects of adiponectin are mediated via a heme oxygenase-1-dependent pathway in rat Kupffer cells[J].Hepatology,2010,51:1420-1429.
[66]Berg A H,Combs T P,Du X,et al.The adipocyte-secretedprotein Acrp30 enhances hepatic insulin action[J].Nat Med 2001,7:947-953.
[67]Stefan N,Stumvoll M,Vozarova B,et al.Plasma adiponectin and endogenous glucose production in humans[J].Diabetes Care,2003,26:3315-3319.
[68]Yamauchi T,Kamon J,Minokoshi Y,et al.Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase[J].Nat Med,2002,8:1288-1295.
[69]Miller R A,Chu Q,Le Lay J,et al.Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling[J].J Clin Invest,2011,121:2518-2528.
[70]Holland W L,Summers S A.Sphingolipids,insulin resistance,and metabolic disease:new insights from in vivo manipulation of sphingolipid metabolism[J].Endocr Rev,2008,29:381-402.
[71]Zhang Q J,Holland W L,Wilson L,et al.Ceramide mediates vascular dysfunction in diet-induced obesity by PP2Amediated dephosphorylation of the eNOS-Akt complex[J].Diabetes,2012,61:1848-1859.
[72]Yang G,Badeanlou L,Bielawski J,et al.Central role of ceramide biosynthesis in body weight regulation,energy metabolism,and the metabolic syndrome[J].Am J Physiol Endocrinol Metab,2009,297:E211-224.
[73]Aerts J M,Ottenhoff R,Powlson A S,et al.Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity[J].Diabetes,2007,56(5):1341-1349.
[74]Magkos F,Su X,Bradley D,et al.Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects[J].Gastroenterology,2012,142:1444-1446.
[75]Unger R H,Scherer P E.Gluttony,sloth and the metabolic syndrome:a roadmap to lipotoxicity[J].Trends Endocrinol Metab,2010,21:345-352.
[76]Ferguson J F,Phillips C M,Tierney A C,et al.Gene-nutrient interactions in the metabolic syndrome:single nucleotide polymorphisms in ADIPOQ and ADIPOR1 interact with plasma saturated fatty acids to modulate insulin resistance[J].Am J Clin Nutr,2010,91:794-801.
[77]Gastaldelli A,Miyazaki Y,Mahankali A,et al.The effect of pioglitazone on the liver:role of adiponectin[J].Diabetes Care,2006,29:2275-2281.
[78]Pajvani U B,Hawkins M,Combs T P,et al.Complex distribution,not absolute amount of adiponectin,correlates with thiazolidinedione-mediated improvement in insulin sensitivity[J].J Biol Chem,2004,279:12152-12162.
[79]Hara K,Horikoshi M,Yamauchi T,et al.Measurement of the high-molecular-weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome[J].Diabetes,2006,55:A212-A212.
[80]Ding G,Qin Q,He N,et al.Adiponectin and its receptors are expressed in adult ventricular cardiomyocytes and upregulated by activation of peroxisome proliferator-activated receptor gamma[J].J Mol Cell Cardiol,2007,43:73-84.
[81]Adams A C,Yang C,Coskun T,et al.The breadth of FGF21s metabolic actions are governed by FGFR1 in adipose tissue[J].Mol Metab,2012,28;2(1):31-37.