梁湘辉,朱文浩,高 颖
(1. 山东省济宁市中医院,山东 济宁 272013;2. 山东省淄博市中医医院,山东 淄博 255300;3. 北京中医药大学东直门医院,北京 100700)
综 述
小胶质细胞介导多发性硬化发病的机制研究进展
梁湘辉1,朱文浩2,高 颖3
(1. 山东省济宁市中医院,山东 济宁 272013;2. 山东省淄博市中医医院,山东 淄博 255300;3. 北京中医药大学东直门医院,北京 100700)
小胶质细胞;多发性硬化;实验性自身免疫性脑脊髓炎;发病机制
多发性硬化(multiple sclerosis,MS)是一种自身免疫反应引起的中枢神经系统(central nervous system,CNS)慢性炎症性脱髓鞘性疾病,以炎症反应、髓鞘脱失、轴突损伤、髓鞘再生和胶质增生为主要病理特征[1]。MS的确切发病机制尚未完全阐明,但与自身免疫反应有关。小胶质细胞(microglial cell,MG)是CNS内常驻免疫细胞,占所有胶质细胞的10%~20%,静息状态下负责CNS的监视作用,在大多数CNS病理条件下被激活,激活的MG发生形态学和分子学变化,参与先天和自适应免疫反应[2-3]。MS及实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis,EAE)中均存在MG的激活。研究表明,MG的激活发生在脱髓鞘改变的2~4周前[4]。在MS和EAE中,MG不仅参与免疫反应引起的CNS损伤,在疾病的恢复和神经再生中也起重要作用[5]。现对MG在MS和EAE中的作用进行综述。
MG是脑内主要的抗原呈递细胞(antigen-presenting cells,APCs),参与了反应性T细胞浸润[6]。研究发现,在MS的急性活跃病灶和慢性活跃病灶的边缘部存在大量的CD163+MG/巨噬细胞,慢性不活跃病灶和慢性活跃病灶的中央部罕见CD163+MG/巨噬细胞[7]。双标法显示,在脑实质和血管周围CD163+MG/巨噬细胞内碱性髓鞘蛋白(myelin basic protein,MBP)和人白细胞(位点)DR抗原[human leukocyte antigen(locus)DR,HLA-DR]阳性,说明CD163+MG/巨噬细胞可以摄取和呈递抗原[7]。MG(HLA-DR+细胞)的呈递作用与MS病灶内的轴突损伤密切相关,但轴突损伤部位的HLA-DR+细胞比髓鞘脱失处少[8]。在体外,原代人MG通过抗原呈递作用可以降低人脑内髓鞘和神经元蛋白,引起髓鞘和神经元损伤[8]。许多研究表明,神经元抗原是自身免疫反应的触点[9-11],因此摄取和呈递神经元抗原将加重病理性自身免疫反应。MG可以摄取神经元抗原,并将其呈递给免疫反应性T细胞,使其聚集到CNS并转化成细胞毒性表型细胞(如Th1、Th17),引起神经损伤。
MG向T细胞进行有效的抗原呈递,需要能对抗原进行识别、呈递的主要组织相容性复合体(major histocompatibility complex,MHC)分子和APC中能与T细胞结合的协同刺激分子(co-stimulatory molecule)的共同参与。其中MHCⅡ吞噬呈递抗原的作用受Toll样受体(Toll-like receptor,TLR)和神经元表达的膜糖蛋白CD200的调节[12-13]。MS中重要的T细胞协同刺激分子有CD40、CD137、B7糖蛋白等,它们通过与T细胞上的配体结合协同APC完成抗原呈递作用[14-15]。
激活的MG可以释放IL-1α、IL-1β、IL-2、IL-4、IL-6、IL-10、IL-12、IL-17、IL-18、IL-23、IL-27等[14,16]。IL-1β、IL-6、IL-12、IL-23可以使Th0细胞向Th1细胞和Th17细胞分化,二者均参与MS/EAE的发病。其中IL-12使Th0分化为Th1,进而释放IL-2、γ-干扰素(INF-γ)等,促进T细胞增殖,加重炎症反应[17]。IL-1β、IL-6、IL-23可以使Th0分化为Th17,进而释放IL-6、IL-17、IL-23、肿瘤坏死因子-α(TNF-α)等,参与了EAE的发病。研究表明,MS患者复发时IL-17A、IL-6和IL-23p19均升高[18],而MS或EAE的病情进展与IL-23有密切关系。
IL-4主要由Th2细胞分泌,但激活的MG也可以释放IL-4。IL-4是抗炎性细胞因子,能拮抗INF-γ产生的神经破坏作用。Butovsky等[19]研究发现,IL-4可拮抗高浓度IFN-γ诱导的MG对少突胶质细胞发生的阻碍作用。IL-4可以逆转IFN-γ引起的抑制少突胶质细胞发生的作用,减少TNF-α的生成,增加胰岛素样生长因子-1(IGF-1)的产生。在啮齿类EAE的脑脊液中注射IL-4活化的MG,可以使脊髓中的少突胶质细胞形成增加和临床症状改善。IL-10可以与Th1效应细胞上的IL-10受体结合,抑制炎症性T细胞的转移和增殖,对EAE起保护作用[20]。
INF-γ是一种促炎性细胞因子,主要由Th1细胞分泌,但激活的MG也可以分泌INF-γ。激活的Th1细胞通过上调MHCⅡ分子和协同刺激分子B7-1和B7-2,使MG被激活并成为APCs。活化的MG分泌IL-12、IL-18、IL-23和IL-27,使Th0细胞分化成Th1细胞,成熟的Th1 CD4+细胞又产生INF-γ,进一步激活MG。同时,激活的MG也分泌INF-γ,形成正反馈回路[14]。INF-γ参与了炎症反应,促进MS/EAE的发病。
近年来研究表明,INF-γ对MS/EAE也有保护作用,与诱导MG的凋亡有关。Takeuchi等[21]研究发现,INF-γ可以诱导MG的凋亡和活化MG诱导的细胞死亡,这可能是通过自限性负反馈调节实现的。MG的凋亡与促凋亡蛋白,特别是Bax的表达上调有关,而抑制凋亡蛋白的表达下调。INF-γ诱导的MG活化和后续死亡在MS的复发和缓解中起重要作用。
TNF-α是一种促炎性细胞因子,在CNS主要由激活的MG分泌,通过抑制MG产生的TNF-α可以抑制炎症性脱髓鞘。TNF-α可以中和抗体或结合重组的TNF受体蛋白,导致MS复发[14]。研究表明,TNF-α可以诱导MG释放谷氨酸,引起神经毒性损伤[22]。在体外,TNF-α可以下调少突胶质细胞上的谷氨酸转运蛋白的表达、抑制谷氨酸的摄取和促进NO的合成,加重MS/EAE的病情[14]。
此外,TNF还有神经保护作用。在EAE中,TNF主要由T细胞和髓系细胞分泌,它可以协同抑制APCs产生IL-12p40和IL-6,进而抑制致脑炎性T细胞发育成Th1和Th17,减轻EAE的病情[23]。
IGFs是CNS正常发育不可或缺的肽类激素,它能促进少突胶质细胞的发育、生存和髓磷脂合成,具有保护中枢神经和生髓作用[24-25]。体内和体外实验研究均表明,IGF-1能减少小鼠视网膜内感光细胞的死亡,对营养不良的视网膜有神经保护作用[26]。MG衍生的IGF-2能阻断半乳糖脑苷脂(GalC)对少突胶质细胞的毒性[27]。在缺氧缺血性脑病的损伤部位,MG表达IGF-1 mRNA[28]。胰岛素样生长因子-2(IGF-2)存在于未激活的和INF-γ处理的MG[24]。MG对神经的保护作用是通过分泌IGF-1实现的[26]。其功能依赖于IGF结合蛋白高亲和力调节因子(IGFBPs),特别是IGFBP-2[24]。研究表明,MS的发病可能与IGF-1的生物利用度减少有关[29],系统性注入IGF-1对EAE的临床病程表现出多样和瞬变的保护作用[30]。
NGF是第一个被发现的神经营养因子,它能刺激外周和中枢神经系统神经元的分化、生存和生长,保护神经元和髓鞘免受炎症的损伤,调节免疫系统,减轻急性炎症反应过程中的兴奋性毒性[31]。研究表明,激活的MG可以产生NGF,MG表达和释放NGF受A2 a-腺苷受体的调节[32]。NGF与其高亲和力的受体TrkA结合后发挥生物学作用。在EAE急性期,运动神经元中TrkA的免疫反应减少,而在少突胶质细胞中上调,并且主要集中在CNS白质[33],说明在EAE急性期神经元损伤的同时,少突胶质细胞被激活,发挥修复神经元的作用。另有研究表明,在MS的损伤组织,神经营养因子缺乏可以通过外周血单核细胞合成补偿。在复发-缓解型MS,β-NGF与认知表现密切相关,它在MS中可能起到神经保护作用,特别是在认知功能区[34]。
在MS或EAE中,激活的MG高水平表达趋化因子(如CCL2~CCL5、CCL8、CCL19、CCL21、CXCL1和CXCL8~CXCL13等)及其受体(如CCR3、CXCR1和CXCR3等)[35],募集白细胞、单核细胞、巨噬细胞、T细胞、B细胞和树突状细胞向CNS的病灶部位聚集,引起局部的神经炎症,参与髓鞘的吞噬[36]。对多种趋化因子受体敲除模型进行研究表明,趋化因子对EAE的发病和进展非常重要。如CCR1敲除小鼠表现出较轻的EAE,CCR2敲除小鼠表现出部分或完全抵抗EAE,CCR8敲除小鼠的病情减弱和临床症状出现的时间延迟[14]。趋化因子还可以趋化抗炎性细胞,如CCL11募集Th2细胞到达MS病灶处,起到保护神经的作用[37]。
PGs是花生四烯酸的衍生物,它可以调节多种生理系统,包括CNS、呼吸系统、心血管系统、胃肠系统、泌尿系统、内分泌系统和免疫系统[38]。PGs是花生四烯酸通过环氧合酶1/2(COX1/2)通路合成的强效氧化脂质分子,以自分泌和旁分泌的形式分泌[39-40],与炎症反应有关,可能是MS病理变化的有效调节因子[38]。研究表明,在髓鞘脱失过程中脑内的PGE2、PGD2和PGI2水平升高,在髓鞘再生过程中脑内的PGE2、PGD2和PGI2水平恢复正常[41]。Kihara等[42]指出,EAE的病变主要与PGE2通路有关,而与PGD2、PGI2和5-脂氧合酶(5-LO)通路的关系较弱[42]。激活的MG可以通过COX-1/2合成和释放PGE2,同时COX-PGE2通路受p38丝裂原活化蛋白激酶(p38MAPK)的调节[43]。PGE2合成和释放受COX1/2的限制,因此调节MG内COX-1/2的活性,可以调节PGE2的合成和释放,从而影响EAE的病理变化和病情进展。研究表明,阻断COX1/2可以延迟EAE的发病,减轻EAE的病情,降低Th1型细胞因子的产生[40]。除促炎症作用外,COX-2衍生的PGE2对先天免疫反应还显示出抗炎作用[44],介导神经保护。
NO是一种信号分子,也是一种神经递质和自由基。正常条件下,它参与了血管扩张、神经功能和免疫反应。此外,它还参与了许多病理反应,如MS[45]。研究表明,NO及其衍生物在MS中发挥重要作用[46];NO的代谢物增高与轴突变性和临床残疾相关[47];在MS髓鞘脱失和髓鞘再生病变处表达诱导型一氧化氮合酶(iNOS)[48]。激活的MG可以表达iNOS mRNA及其蛋白,释放NO。NO与超氧化物反应产生过氧亚硝基(ONOO-),对成熟少突胶质细胞有毒性[49]。另有研究表明,内皮型一氧化氮合酶缺陷(eNOS-/-)小鼠EAE的发病延迟,与血脑屏障(BBB)的破坏延迟有关。说明eNOS产生的NO是T细胞渗透至CNS的基础。然而,eNOS-/- EAE小鼠的最终临床症状更重,并且恢复延迟,说明NO在MS/EAE中有双重作用,即促炎性作用和神经保护作用[50]。
谷氨酸是哺乳动物大脑内主要的兴奋性神经递质。经谷氨酸突触传导的正常神经冲动是整个大脑所需要的,是学习和记忆的基础。然而,异常高水平的细胞外谷氨酸会导致神经轴突细胞死亡[51]。研究表明,在MS脱髓鞘和轴突变性斑块内存在过量的谷氨酸释放,最有可能释放谷氨酸的细胞是浸润的白细胞和激活的MG[52]。激活的MG通过谷氨酰胺酶生成谷氨酸,并经缝隙连接的半通道释放[53]。正常情况下,谷氨酸通过兴奋性氨基酸转运蛋白(EAAT)转运。在MS中,激活的MG可以释放ONOO-和氧自由基,下调EAAT的表达和功能,导致谷氨酸转运障碍,引起髓鞘、神经元、突触和少突胶质细胞损伤。
MMPs属于锌依赖性肽链内切酶,存在于中枢和外周神经系统,参与了细胞外基质和细胞基质的重塑及相互反应,与多种神经病理性疾病有关,其中包括MS[54]。激活的MG可以分泌MMPs,MMPs在MS和EAE的MBP裂解和脱髓鞘中起重要作用[55],并参与了神经炎症、血脑屏障(BBB)破坏和免疫反应。
研究表明,脂多糖(LPS)激活的BV-2小胶质细胞产生ROS增加[56],而激活的BV-2小胶质细胞通过ROS通路使TNF-α和MCP-1增加[57],参与MS和EAE的发病。
在MS中,MG通过吞噬作用清除死亡细胞、诱导神经营养因子、抗炎性细胞因子和抗氧化酶而显示出神经保护作用。
以上研究结果表明,MG在MS/EAE中的具体作用机制可能与以下几方面作用有关:①抗原呈递作用。MG可以将抗原呈递给T细胞,使之分化成细胞毒性T细胞,参与免疫反应。②吞噬作用。MG可以吞噬死亡的细胞或神经元碎片,为神经的修复提供有利环境,促进神经再生。③分泌各种细胞毒性物质。如细胞因子、趋化因子、NO、谷氨酸、PGs、ROS等,在MS/EAE的过程中显示出损害或保护两方面的作用。
MG在MS/EAE的发病和修复中均起非常重要的作用,是治疗MS的关键之一。因此,对MG在MS/EAE中的作用机制进行系统而深入的研究,明确MG介导MS发病的可能机制,有助于从调节MG功能的角度而不是单纯抑制MG功能的角度研发治疗MS的新药。
[1] De-Lago E,Moreno-Martet M,Cabranes A,et al. Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB1 receptor-mediated anti-inflammatory effects[J]. Neuropharmacology,2012,62(7):2299-2308
[2] Hanisch U,Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathological brain[J]. Nat Neurosci,2007,10(11):1387-1394
[4] Skripuletz T,Bussmann JH,Gudi V,et al. Cerebellar cortical demyelination in the murine cuprizone model[J]. Brain Pathol,2010,20(2):301-312
[5] Napoli I,Neumann H. Protective effects of microglia in multiple sclerosis[J]. Exp Neurol,2010,225(1):24-28
[6] McKenzie BS,Kastelein RA,Cua DJ. Understanding the IL-23-IL-17 immune pathway[J]. Trends Immunol,2006,27(1):17-23
[7] Zhang Z,Zhang ZY,Schittenhelm J,et al. Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains[J]. J Neuroimmunol,2011,237(1/2):73-79
[8] Huizinga R,Van-Der-Star BJ,Kipp M,et al. Phagocytosis of neuronal debris by microglia is associated with neuronal damage in multiple sclerosis[J]. Glia,2012,60(3):422-431
[9] Huizinga R,Heijmans N,Schubert P,et al. Immunization with neurofilament light protein induces spastic paresis and axonal degeneration in Biozzi ABH mice[J]. J Neuropathol Exp Neurol,2007,66(4):295-304
[10] Huizinga R,Gerritsen W,Heijmans N,et al. Axonal loss and gray matter pathology as a direct result of autoimmunity to neurofilaments[J]. Neurobiol Dis,2008,32(3):461-470
[11] Mathey EK,Derfuss T,Storch MK,et al. Neurofascin as a novel target for autoantibody-mediated axonal injury[J]. J Exp Med,2007,204(10):2363-2372
[12] Blander JM. Coupling Toll-like receptor signaling with phagocytosis: potentiation of antigen presentation[J]. Trends Immunol,2007,28(1):19-25
[13] Hernangómez M,Mestre L,Correa FG,et al. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation[J]. Glia,2012,60(9):1437-1450
[14] Sanders P,De Keyser J. Janus faces of microglia in multiple sclerosis[J]. Brain Res Rev,2007,54(2):274-285
[15] Yeo YA,Martínez Gómez JM,Croxford JL,et al. CD137 ligand activated microglia induces oligodendrocyte apoptosis via reactive oxygen species[J]. J Neuroinflammation,2012,9(1):173
[16] Black JA,Liu S,Waxman SG. Sodium channel activity modulates multiple functions in microglia[J]. Glia,2009,57(10):1072-1081
[17] Sumoza-Toledo A,Eaton AD,Sarukhan A. Regulatory T cells inhibit protein kinase C theta recruitment to the immune synapse of naive T cells with the same antigen specificity[J]. J Immunol,2006,176(10):5779-5787
[18] Muls N,Jnaoui K,Dang HA,et al. Upregulation of IL-17,but not of IL-9,in circulating cells of CIS and relapsing MS patients. Impact of corticosteroid therapy on the cytokine network[J]. J Neuroimmunol,2012,243(1/2):73-80
[19] Butovsky O,Landa G,Kunis G. Induction and blockage of oligodendro-genesis by differently activated microglia in an animal model of multiple sclerosis[J]. J Clin Invest,2009,116(4):905-915
[20] Huss DJ,Winger RC,Cox GM,et al. TGF-β signaling via Smad4 drives IL-10 production in effector Th1 cells and reduces T-cell trafficking in EAE[J]. Eur J Immunol,2011,41(10):2987-2996
[21] Takeuchi H,Wang J,Kawanokuchi J,et al. Interferon-gamma induces microglial activation induced cell death: a hypothetical mechanism of relapse and remission in multiple sclerosis[J]. Neurobiol Dis,2006,22(1):33-39
[22] Takeuchi H,Jin S,Wang J,et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner[J]. J Biol Chem,2006,281(30):21362-21368
[23] Kruglov AA,Lampropoulou V,Fillatreau S,et al. Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells[J]. J Immunol,2011,187(11):5660-5670
[24] Chesik D,De Keyser J,Wilczak N. Insulin-like growth factor binding protein-2 as a regulator of IGF actions in CNS: implications in multiple sclerosis[J]. Cytokine Growth Factor Rev,2007,18(3/4):267-278
[25] Wilczak N,Chesik D,Hoekstra D,et al. IGF binding protein alterations on periplaque oligodendrocytes in multiple sclerosis: implications for remyelination[J]. Neurochem Int,2008,52(8):1431-1435
[26] Arroba AI,Alvarez-Lindo N,van Rooijen N,et al. Microglia-mediated IGF-1 neuroprotection in the rd10 mouse model of retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci,2011,52(12):9124-9130
[27] Nicholas RS,Stevens S,Wing MG,et al. Microglia-derived IGF-2 prevents TNF alpha induced death of mature oligodendrocytes in vitro[J]. J Neuroimmunol,2002,124(1/2):36-44
[28] O’Donnell SL,Frederick TJ,Krady JK,et al. IGF-I and microglia/macrophage proliferation in the ischemic mouse brain[J]. Glia,2002,39(1):85-97
[29] Lanzillo R,Di Somma C,Quarantelli M,et al. Insulin-like growth factor (IGF)-1 and IGF-binding protein-3 serum levels in relapsing-remitting and secondary progressive multiple sclerosis patients[J]. Eur J Neurol,2011,18(12):1402-1406
[30] Genoud S,Maricic I,Kumar V,et al. Targeted expression of IGF-1 in the central nervous system fails to protect mice from experimental autoimmune encephalomyelitis[J]. J Neuroimmunol,2005,168(1/2):40-45
[31] Colafrancesco V,Villoslada P. Targeting NGF pathway for developing neuroprotective therapies for multiple sclerosis and other neurological diseases[J]. Arch Ital Biol,2011,149(2):183-192
[32] Heese K,Fiebich BL,Bauer J,et al. Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2 a-receptors[J]. Neurosci Lett,1997,231(2):83-86
[33] Oderfeld-Nowak B,Zaremba M,Lipkowski AW,et al. High-affinity NGF receptor in the rat spinal cord during acute and chronic phases of experimental autoimmune encephalomyelitis:a possible functional significance[J]. Arch Ital Biol,2003,141(2/3):103-116
[34] Kalinowska-yszczarz A,Pawlak MA,Michalak S,et al. Cognitive deficit is related to immune-cell beta-NGF in multiple sclerosis patients[J]. J Neurol Sci,2012,321(1/2):43-48
[35] Flynn G,Maru S,Loughlin J,et al. Regulation of chemokine receptor expression in human microglia and astrocytes[J]. J Neuroimmunol,2003,136(1/2):84-93
[36] Koning N,Uitdehaag BM,Huitinga I,et al. Restoring immune suppression in the multiple sclerosis brain[J]. Prog Neurobiol,2009,89(4):359-368
[37] Wainwright DA,Xin J,Sanders VM,et al. Differential actions of pituitary adenylyl cyclase-activating polypeptide and interferon gamma on Th2-and Th1-associated chemokine expression in cultured murine microglia[J]. J Neurodegener Regen,2008,1(1):31-34
[38] Mirshafiey A,Jadidi-Niaragh F. Prostaglandins in pathogenesis and treatment of multiple sclerosis[J]. Immunopharmacol Immunotoxicol,2010,32(4):543-554
[39] Cimino PJ,Keene CD,Breyer RM,et al. Therapeutic targets in prostaglandin E2 signaling for neurologic disease[J]. Curr Med Chem,2008,15(19):1863-1869
[40] Marusic S,Thakker P,Pelker JW. Blockade of cytosolic phospholipase A2 alpha prevents experimental autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses[J]. J Neuroimmunol,2008,204(1/2):29-37
[41] Palumbo S,Toscano CD,Parente L,et al. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination[J]. Prostaglandins Leukot Essent Fatty Acids,2011,85(1):29-35
[42] Kihara Y,Matsushita T,Kita Y,et al. Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis[J]. Proc Natl Acad Sci U S A,2009,106(51):21807-21812
[43] Matsui T,Svensson CI,Hirata Y,et al. Release of prostaglandin E(2) and nitric oxide from spinal microglia is dependent on activation of p38 mitogen-activated protein kinase[J]. Anesth Analg,2010,111(2):554-560
[44] Brenneis C,Coste O,Altenrath K,et al. Anti-inflammatory role of microsomal prostaglandin E synthase-1 in a model of neuroinflammation[J]. J Biol Chem,2011,286(3):2331-2342
[45] Roghani M,Mahboudi F,Saharian MA,et al. Concentrations of nitric oxide metabolites in the serum of Iranian multiple sclerosis patients[J]. J Neurol Sci,2010,294(1/2):92-94
[46] Ljubisavljevic S,Stojanovic I,Pavlovic D. Correlation of nitric oxide levels in the cerebellum and spinal cord of experimental autoimmune encephalomyelitis rats with clinical symptoms[J]. Acta Neurobiol Exp (Wars),2012,72(1):33-39
[47] Rejdak K,Petzold A,Stelmasiak Z,et al. Cerebrospinal fluid brain specific proteins in relation to nitric oxide metabolites during relapse of multiple sclerosis[J]. Mult Scler,2008,14(1):59-66
[48] Jack C,Antel J,Brück W. Contrasting potential of nitric oxide and peroxynitrite to mediate oligodendrocyte injury in multiple sclerosis[J]. Glia,2007,55(9):926-934
[49] Barcellos LF,Ramsay PP,Caillier SJ,et al. Genetic variation in nitric oxide synthase 2A (NOS2A) and risk for multiple sclerosis[J]. Genes Immun,2008,9(6):493-500
[50] Li S,Vana AC,Ribeiro R,et al. Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis[J]. Neuroscience,2011,184:107-119
[51] Baranzini SE,Srinivasan R,Khankhanian P,et al. Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis[J]. Brain,2010,133(9):2603-2611
[52] Frigo M,Cogo MG,Fusco ML,et al. Glutamate and multiple sclerosis[J]. Curr Med Chem,2012,19(9):1295-1299
[53] Shijie J,Takeuchi H,Yawata I,et al. Blockade of glutamate release from microglia attenuates experimental autoimmune encephalomyelitis in mice[J]. Tohoku J Exp Med,2009,217(2):87-92
[54] Romi F,Helgeland G,Gilhus NE. Serum levels of matrix metalloproteinases: implications in clinical neurology[J]. Eur Neurol,2012,67(2):121-128
[55] Shiryaev SA,Savinov AY,Cieplak P,et al. Matrix metalloproteinase proteolysis of the myelin basic protein isoforms is a source of immunogenic peptides in autoimmune multiple sclerosis[J]. PLoS One,2009,4(3):1-9
[56] Wu Y,Zhai H,Wang Y et al. Aspirin-triggered lipoxin A(4) attenuates lipopolysaccharide-induced intracellular ROS in BV2 microglia cells by inhibiting the function of NADPH oxidase[J]. Neurochem Res,2012,37(8):1690-1696
[57] Quan Y,Jiang CT,Xue B,et al. High glucose stimulates TNF-α and MCP-1 expression in rat microglia via ROS and NF-κB pathways[J]. Acta Pharmacol Sin,2011,32(2):188-193
朱文浩,E-mail:doctorzwh@163.com
国家自然科学基金资助项目(81072770)
10.3969/j.issn.1008-8849.2015.27.042
R364.32
A
1008-8849(2015)27-3067-05
2015-01-15