朱胤
“小组合作学习”是一种新的学习方式,对促进学生间的情感交流、互帮互学、共同提高,发挥了积极的作用。教师在对学生开展小组合作学习时,一定要保证有效的合作,应关注每一个学生的进步和发展,让课堂教学变得轻松自如。
教学片段再现
前置学习 问题一:在图①中画出⊙O的一条对称轴;与同伴交流一下,大家画的对称轴有什么特点?问题二:如图②,已知AB是任意一条弦,试在图②中画出这个图形的对称轴;交流一下你的画法,并尝试说说这样画的理由。
师:请大家在小组中交流、订正问题一和问题二,并请组长记录下本组的做法。
生1:问题一是圆的对称轴是直径所在的直线,易错点是不能漏了“所在直线”。圆的对称轴的特点是它们都经过圆心。
师:好。请大家交流问题二中的画法,上台展示。
生2:我们组有两种方法:一是作AB的垂线;二是以A、B为圆心,连接两圆的交点的连线。
师:这两种做法是否都正确?
生:不对。
师:如何修改?
生3:增加条件“以大于AB的长为半径”,就是画了AB的中垂线。
师:我们把第二种画法改为“画AB的中垂线”,这样更简洁明了。
例练巩固 例题:已知在⊙O中,弦AB的长为8cm,圆心O到AB的距离OC为3cm,求圆O的半径。变式一:如图,在半径为5cm的⊙O中,有长8cm弦AB,求点O与AB的距离;在学生练习后,总结出一个直角三角形,三条边由“弦的一半,弦心距,半径”构成。变式二:试就右图,参考例题及变式一,编写一道题目,记下来。
师:请组长花1分钟时间收集好小组成员编写的问题,并交流。
生1:我们组编的题目有:①已知OC=4,OB=6,求AB的长;②已知AB=10,OB=6,求CD的长;③已知CD=2,AB=8,求圆的半径。
生2:我们组还编了:④已知弧AB的度数为60°,半径OB长为6,求弦AB长度。
生3:我们组还编了:⑤已知∠ABO的正切值为,半径OB长为10,求弦长AB、CD、弦心距OC。
师:编的都很好,特别是③④⑤几个问题,请大家课后去练习这些问题。
小组合作的几点思考
给予充分时间讨论,是进行有效合作学习的前提 小组合作学习时,要给学生充分的讨论时间,否则非但达不到合作学习的目的,而且很容易挫伤学生学习的热情,养成敷衍了事的不良习惯。因此,教师需给学生充分的时间,使每位学生在小组内充分表达自己的思路、想法,学会接受别人,欣赏别人,取长补短。笔者尝试发现,经过小组充分讨论解决的问题,往往学生理解得比较透彻,不容易遗忘,虽然在讨论时多花了两三分钟时间,但却有事半功倍的效果。
明确讨论时间,是进行有效合作学习的基础 任何事情如果没有时间作保证都将落入形式主义,合作学习也是如此。虽然教师要给学生充分讨论的时间,但也不能没有时间的限制。第一,经常性的无限时讨论,教师的教学内容肯定无法完成;第二,经常性的无限时讨论,必将使学生养成拖拉、懒散的习惯;第三,经常性的无限时讨论,容易让学生找到钻空子的机会,一些学习不自觉的学生就会在讨论时做一些与学习无关的事情,从而降低课堂效率。因此,笔者认为,在进行小组讨论时,一定要明确小组讨论的时间,否则就成了“低效”的合作学习。
设置开放问题,全员参与,是进行有效合作学习的途径 本节课中,教师设置了这样的一个问题:“试就右图,参考例题及变式一,编写一道题目,记下来。(数据不要过大)”这是本堂课的一个亮点,课堂上每一位同学都积极思考、交流讨论并与全班同学分享自己的成果。从学生自编的问题可以看出,这一开放性问题满足了学生的个性化需求,稍差的学生也能够掌握最基本的方法,编出一些基本题;思维能力强的学生能从不同角度去思考、理解,编出高质量的问题,如问题③④⑤,或利用方程解决问题或与前面知识结合,得到一道稍有综合的、新颖的题目。
小组合作的“组织性”,是进行有效合作学习的保障 本节课中,教师始终依托每个小组的组长开展教学。比如在变式一的处理中,由于问题比较简单,因此教师采用“批改组长答案——组长批改组员作业——组内相互订正”的方式,保证所有学生都能掌握基础知识。在变式二的处理中,由于问题有一定的难度,先让学生进行独立思考,再交流讨论,最后由组长收集汇报。从变式二的交流来看,学生提出了不同层次的问题,说明小组合作能集思广益,保证课堂教学有效开展。
(作者单位:江苏省太仓市第一中学)endprint