坐标系与参数方程的考情分析与复习指导

2015-01-28 18:11徐晓华崔小军
中学课程辅导高考版·学生版 2015年1期
关键词:极坐标直角坐标定点

徐晓华+崔小军

一、考情分析

坐标系与参数方程命题的重点是两种形式方程的转化以及直线和圆、直线与椭圆的位置关系,这主要包括特殊曲线的极坐标方程的求解以及极坐标与直角坐标的转化、参数方程与普通方程的转化等,这也是高考命题的主要热点.

二、知识整理

1.极坐标

(1)极坐标系的建立:在平面内取一个定点O,叫做极点,从O点引出一条射线Ox,叫做极轴,再选定一个长度单位、一个角度单位(通常取弧度)及正方向(通常取逆时针方向),这样就确定了一极坐标系.设M是平面内一点,极点O与点M的距离OM叫做点M的极径,记为ρ,以极轴Ox为始边,射线OM为终边的角叫做点M的极角,记为θ,有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).

(2)极坐标与直角坐标的互化:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,它的直角坐标是(x,y),极坐标为(ρ,θ),则它们之间的关系为x=ρcosθ,y=ρsinθ,又可得到关系式:ρ2=x2+y2,tanθ=yx.

2.直线的极坐标方程

(1)若直线过点M(ρ0,θ0),且极轴到此直线的角为α,则它的方程为:

ρsin(θ-α)=ρ0sin(θ0-α).

(2)几个特殊位置的直线的极坐标方程

θ=α(ρ∈R)表示过极点且与极轴成α角的直线(如图①);ρcosθ=a表示过(a,0)且垂直于极轴的直线(如图②);ρsinθ=b表示过(b,π2)且平行于极轴的直线(如图③).

3.圆的极坐标方程

(1)若圆心为M(ρ0,θ0),半径为r的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r2=0.

(2)几个特殊位置的圆的极坐标方程

ρ=r表示圆心在极点,半径为r的圆(如图④).

ρ=2rcosθ表示圆心在(r,0),半径为r的圆(如图⑤).ρ=2rsinθ表示圆心在(r,π2),半径为r的圆(如图⑥).

4.曲线的参数方程

在平面直角坐标系xOy中,如果曲线上任意一点坐标x,y都是某个变量t的函数x=f(t)

y=g(t)并且对于t的每一个允许值,上式所确定的点M(x,y)都在这条曲线上,则称上式为该曲线的参数方程,其中变量t称为参数.

5.一些常见曲线的参数方程

(1)过点P0(x0,y0),且倾斜角为α的直线的参数方程为x=x0+tcosα

y=y0+tsinα(t为参数),设P是直线上的任一点,则t表示有向线段P0P的数量.

(2)圆的方程(x-a)2+(y-b)2=r2的参数方程为x=a+rcosθ

y=b+rsinθ(θ为参数).

(3)椭圆方程x2a2+y2b2=1(a>b>0)的参数方程为x=acosθ

y=bsinθ(θ为参数).

(4)抛物线方程y2=2px(p>0)的参数方程为x=2pt2

y=2pt(t为参数).

二、复习指导

(1)准确把握一个区别:极坐标系与直角坐标系是两种不同的坐标系,不能把直角坐标系中的公式直接应用到极坐标中,如直角坐标系中的两点间距离公式就不能在极坐系中使用.

(2)熟练掌握两个转化:一是参数方程向普通方程转化的基本方法就是消参数法,但要注意参数的取值范围对普通方程中变量的限制;二是极坐标与直角坐标的转化,要准确记忆相应公式,这是转化的基础.

(3)灵活应用一个性质,即在解决直线和圆的位置关系时,要注意灵活利用几何性质——即平面几何中有关圆的结论来求解,减少运算量,提高解题的速度和准确度.

三、典例全解

1.求解参数方程相关问题的简便方法

例1 将参数方程x=3t-5

y=-2t+1(t为参数),化成普通方程,并判断它是什么曲线?

分析:参数方程中的两个方程都是关于t的一次方程,由其中任意一个都可以解出参数,然后把参数的表达式代入另一个方程即可,也可以将两个方程分别乘上某个数,把t的系数化成相同,然后两式相减即可.

解析:法一:由x=3t-5,得t=x+53,把t=x+53代入y=-2t+1,得y=-2·x+53+1,整理得2x+3y+7=0,即所求曲线的普通方程为2x+3y+7=0,它是一条直线.

法二:参数方程可变形为2x=6t-10

-3y=6t-3,消去t,得2x+3y+7=0,即所求曲线的普通方程为2x+3y+7=0,它是一条直线.

点评:代入消参法与加减消参法是解决参数方程化为普通方程最常用的两种方法,本例的解法一就是代入消参法,从参数方程中选出x=3t-5,解出参数t=x+53,然后把参数t的表达式代入y=-2t+1,消去参数t,即可把已知参数方程化为普通方程;解法二采用的是加减消参法,将参数方程中的两个方程分别乘上某个常数,把t的系数化相同,然后两式相减即可.注意:不是所有的参数方程都可以化成普通方程,化参数方程为普通方程的基本思路是消去参数,这种消参的过程不能增加或减少曲线上的点,即要求参数方程和普通方程是等价的,因此在消参时要注意以下两个方面:(1)根据参数条件,明确x,y的取值范围;(2)消去参数后,普通方程要与原参数方程的取值范围保持一致,为了防止转化过程中出现范围的变化,也可以先由参数方程讨论出x,y的变化范围,再对方程进行转化.

2.参数方程与极坐标方程的综合问题

例2 已知曲线C的极坐标方程是ρ=2sinθ,设直线l的参数方程是x=-35t+2

y=45t(t为参数),(1)将曲线C的极坐标方程化为直角坐标方程;(2)设直线l与x轴的交点是M,N为曲线C上一动点,求|MN|的最大值.

分析:第(1)问利用极坐标公式x2+y2=ρ2,y=ρsinθ把曲线C的极坐标方程转化为直角坐标方程;第(2)问的方法比较多,可以利用数形结合法求解,可以通过圆的参数方程求解,也可以利用参数法、极坐标法或整体代换法求解.

解析:(1)曲线C的极坐标方程可化为ρ2=2ρsinθ,又x2+y2=ρ2,y=ρsinθ,所以曲线C的直角坐标方程为x2+y2-2y=0.

(2)法一(几何法)将直线l的参数方程转化为普通方程,得y=-43(x-2),令y=0,得x=2,即M点的坐标为(2,0),又由(1),知曲线C为圆,圆心C的坐标为(0,1),半径r=1,所以|MC|=5,利用数形结合,可知|MN|≤|MC|+r=5+1,即|MN|的最大值为5+1.

法二(参数法)由(1)知曲线C即圆x2+y2-2y=0的标准方程为x2+(y-1)2=1,圆的参数方程为x=cosα

y=1+sinα(α为参数),N为曲线C上一动点,设N(cosα,1+sinα),由直线l的参数方程是

x=-35t+2

y=45t,知直线l过点M(2,0),所以

|MN|=(cosα-2)2+(1+sinα)2

=6+2(sinα-2cosα)=6+25sin(α-φ)

≤6+25=5+1,

即|MN|的最大值为5+1.

法三(极坐标法)由直线l的参数方程是

x=-35t+2

y=45t,知直线l过点M(2,0),在极坐标系中,M(2,0),N(ρ,θ)且ρ=2sinθ,由余弦定理可得

|MN|2=ρ2+4-2×2ρcosθ=(2sinθ)2+4-4×2sinθcosθ=4sin2θ+4-4sin2θ=2-2cos2θ-4sin2θ+4=6-2(2sin2θ+cos2θ)=6-25sin(2θ+φ)≤6+25=(5+1)2,(其中tanφ=12),所以|MN|的最大值为5+1.

点评:圆上的动点到定点距离的最值问题可用代数法或几何法求解,代数法就是设圆上动点的坐标,利用圆的方程以及距离公式建立目标函数,转化为函数的最值问题求解,如本例第(2)问中的解法二就是利用圆的参数方程,将其转化为求解三角函数的最值问题;而解法三直接利用圆的极坐标方程和余弦定理建立关于极角的目标函数求解最值.几何法就是利用圆的性质直接判断最值,如本例中第(2)问中的解法一直接利用圆心到定点的距离和圆的半径表示最值,显然利用几何法求解更为简捷直观.

3.巧选“定点” 妙用参数方程的典例赏析

过定点P0(x0,y0),倾斜角为α的直线的参数方程x=x0+tcosα

y=y0+tsinα(t为参数)有着广泛的应用,深刻理解参数t的几何意义,恰当选择方程中的“定点”,是灵活运用直线参数方程解题的关键,下面例说巧妙选择定点的几种常见路径.

(1)选已知点为定点

如果直线或直线系经过已知点,那么可尝试以该已知点为方程中的“定点”.

例3 如图,已知焦点在x轴上的椭圆长轴|A1A2|=6,焦距|F1F2|=42,过椭圆焦点F1作一直线交椭圆于两点M、N,设∠MF1F2=α(0≤α<π),当α为何值时,|MN|等于椭圆短轴的长?

解析:建立如图所示的坐标系,则椭圆方程为

x29+y2=1,F1(-22,0),设MN:x=-22+tcosα

y=tsinα

(t为参数),将其代入椭圆方程得:

(cos2α+9sin2α)t2-42tcosα-1=0,

由|MN|=(y2-y1)2+(x2-x1)2=|t1-t2|=(t1+t2)2-4t1·t2=61+8sin2α及|MN|=2,得sinα=±12,∵α∈[0,π),∴α=π6或α=5π6.

(2)选动弦的中点为“定点”

如果以动弦的中点为方程中的“定点”,那么由参数t的几何意义可得t1+t2=0,用好这一关系式常可使求解大为简化.

例4 已知椭圆C:x24+y23=1,试确定m的取值范围,使得对于直线l:y=4x+m,C上有不同两点关于l对称.

解析:设两对称点为A、B,线段AB的中点为M(x0,4x0+m),则AB:x=x0+tcosα

y=4x0+m+tsinα(t为参数),将其代入x24+y23=1,得(3cos2α+4sin2α)t2+2[3x0cosα+4(4x0+m)sinα]t+3x20+4(4x0+m)2-12=0,∵tA+tB=0,∴3x0cosα+4(4x0+m)sinα=0,又∵AB⊥l,∴tanα=-14,代入上式得3x0+4(4x0+m)(-14)=0,即x0=-m ①,由tA·tB<03x20+4(4x0+m)2-12<0,将①代入上式,得3m2+4·9m2-12<0,解得m∈(-21313,21313).

(3)选弦的定比分点为“定点”

如果以弦AB的定比分点P(λ=APPB)为方程中的“定点”,那么由t的几何意义可将定比条件转化为相应参数间的关系式tAtB=λ.

例5 已知椭圆C:x24+y23=1,若过C的右焦点F的直线l与C交于A(x1,y1),B(x2,y2),(其中y1>y2),且|AF||BF|=2,求直线l的方程.

解析:F(1,0),设l的方程为x=1+tcosα

y=tsinα(t为参数,α为钝角),将其代入C的方程,得(3cos2α+4sin2α)t2+6tcosα-9=0,设A、B对应参数为t1,t2,则

t1+t2=-6cosα3cos2α+4sin2α ①,

t1·t2=-93cos2α+4sin2α<0 ②,

又|AF||BF|=|t1t2|=-t1t2=2,即t1=-2t2 ③,

将③分别代入①、②,得t2=6cosα3cos2α+4sin2α,2t22=93cos2α+4sin2α,∴8cos2α=3cos2α+4sin2αtanα=±52,由y1>y2,得tanα<0,

故l的方程为y=-52(x-1).

(4)选所求点为“定点”

如果选取所求点为方程中的“定点”,那么可将该点所满足的几何性质直接用相应的参数t去刻划.

例6 已知直线y=x+m与曲线x2+2y2+4y-1=0交于A、B两点,P是这条直线上的点,且|PA|·|PB|=2,求当m变化时,点P的轨迹方程.

解析:设P(x0,y0),直线y=x+m的参数方程为x=x0+22t

y=y0+22t(t为参数),代入曲线方程,得32t2+2(x0+2y0+2)t+x20+2y20+4y0-1=0(),

由|PA|·|PB|=|t1t2|=2,得

2(x20+2y20+4y0-1)3=2,

或2(x20+2y20+4y0-1)3=-2.

即x206+(y0+1)23=1,或x0=0,y0=-1.

又方程()中Δ≥02(x0-y0)2+4(y0-x0)-7≤0,由y0=x0+m,代入上式得2m2+4m-7≤0,

即-322-1≤m≤322-1,

故P点的轨迹是椭圆x26+(y+1)23=1界于两条直线y=x-1+322与y=x-1-322之间的部分及点(0,-1).

从上述各例可以看出,直线参数方程中的“定点”蕴含着“动”与“静”的辩证性,若能根据问题的特点及参数t的几何意义,适当选取方程中的“定点”,灵活运用直线参数方程,对简化解题过程、开阔解题思路大有裨益.

(作者:徐晓华、崔小军,江苏省阜宁中学)

猜你喜欢
极坐标直角坐标定点
直线过定点的5种特优解法
《平面直角坐标系》巩固练习
在平面直角坐标系中变出“精彩”
中考里的平面直角坐标系题型
圆锥曲线专题(一)
二重积分的极坐标计算法探讨
平面直角坐标系中的点的特征和应用
《极坐标与参数方程》过关测试卷
对一道定点问题求解的进一步探讨