脑衰老相关认知损伤研究进展

2015-01-25 07:36陈琛,李素霞,孟适秋
中国老年学杂志 2015年2期
关键词:认知功能

脑衰老相关认知损伤研究进展

陈琛李素霞孟适秋1闫薇1孙洪强1陆林1

(北京大学中国药物依赖性研究所,北京100191)

关键词〔〕脑衰老;认知功能;突触可塑性;蛋白质合成;表观遗传

中图分类号〔〕R74〔

基金项目:国家自然科学基金面上项目(81171251)

通讯作者:李素霞(1970-),女,副研究员,博士,主要从事生物精神病学研究。

1北京大学第六医院

第一作者:陈琛(1987-),男,博士在读,主要从事衰老相关认知损伤研究。

生物医药科技的发展,有效治疗了青年和中年群体的疾病,使得他们的期望寿命明显延长,也增加了老年人口数量的比例〔1〕。与此同时增加了认知功能受损和老年痴呆的潜在受累人数,这一人数将随着人口平均年龄的增加而持续增长。然而,目前对于衰老相关认知功能损伤的原因及调控机制的认识并不透彻,导致缺乏有效的改善方法和预防措施。因此,了解衰老相关认知损伤的神经生物学机制就十分重要。

1衰老相关的认知功能损伤

人类生长发育到成熟期以后,随着年龄的增长,脑内髓鞘发育生成受损,神经细胞萎缩,细胞内脂褐素蓄积,突触联系和神经递质减少,接受和传递信息的能力降低,导致老年人感觉迟钝、反应缓慢、记忆力下降、脑功能降低,这一现象就是脑衰老。认知功能受脑衰老影响尤为严重。早先的横断面研究提示,语音信息延迟和唤起能力降低广泛存在于老年人群〔2〕;同样,工作记忆和短时程唤起能力也会随衰老而降低〔3〕。衰老相关记忆损伤的另一表现,是空间记忆能力的降低,这一现象普遍存在于包括人类、灵长类、犬科动物和啮齿类动物在内的多个物种〔4~7〕。功能性磁共振成像和正电子断层扫描研究发现,衰老相关记忆改变与前额叶皮层和海马两个脑区的活性改变呈相关性。执行功能相关任务测试时,老年组前额叶皮层活性低于青年组〔8〕。通常老年人在认知损伤时,会通过激活更大面积的前额叶皮层充当补偿机制〔9〕。在海马脑区中,齿状回是受衰老影响最严重的亚区〔10〕。正常状态下与病理状态下,衰老所致的记忆损伤同样存在差异。脑结构研究发现,中颞叶体积缩小与阿尔茨海默病患者记忆受损有关,该脑区体积缩小最早可于记忆损伤的最初期出现;而前额叶皮层体积缩小与正常衰老所致的认知损伤相关〔11〕。

1.1海马脑区调控的记忆范式海马和前额叶皮层对衰老存在较高易感性。所以,经此脑区调控的任务处理能力会随着年龄的增加出现相应降低。海马是调控情景记忆和空间记忆的主要脑区〔12〕。在人群研究中发现,老年人的情景记忆受损,表现为记忆相关的环境细节唤起障碍〔13,14〕。老年人在使用幻灯片模拟空间穿越学习时,会出现明显的空间记忆受损。研究发现,损伤海马脑区会导致包括啮齿动物、灵长类动物和人类〔15〕在内多个物种的空间记忆损伤。Morris水迷宫是检测空间记忆的经典动物模型,啮齿类动物由于逃生动机的驱使,会很快记住平台的位置并登上平台,登上平台所需时间以及游泳的距离被用于评价学习记忆能力;衰老大鼠经过多天训练后,其搜索平台能力会增强,但测试结果明显低于青年组〔16〕。

海马脑区在环境性恐惧记忆的调控中,同样发挥关键作用,而杏仁核脑区同时参与环境性和线索诱导的恐惧记忆的调控〔17〕。研究发现,与衰老组相比,青年组的右侧杏仁核和海马脑区激活程度更高;衰老大鼠的记忆获得能力完整,而长时程记忆的巩固能力受损〔18,19〕。痕迹眨眼条件反射模型属于海马脑区调控的另一条件反射模型:声音作为条件性刺激,而对眼睛吹气属于非条件性刺激。习得眨眼条件反射所需的时间,以及这种记忆维持的时间均作为检测指标。研究发现,衰老的小鼠、大鼠、兔子和人类在痕迹眨眼条件反射记忆的获得和维持中均出现损伤〔20~24〕。

1.2前额叶皮层调控的记忆范式前额叶皮层在调控执行功能中发挥重要作用,注意力、抑制力、工作记忆、认知灵活性和决策力均属于执行功能的范畴〔25~27〕。与啮齿类动物相比,灵长类动物的前额叶皮层结构要明显复杂,所以也曾认为执行功能是灵长类独有的特征。然而,大量研究证明啮齿类动物具有与灵长类同源的神经解剖和功能特性;并且能够完成一系列复杂的、目标明确的行为〔28~30〕。

工作记忆被视作一种复杂的认知过程,需要前额叶皮层的参与,并且对年龄因素易感性强。工作记忆的经典范式为空间延迟唤起实验,毁损人类和灵长类背外侧前额叶皮层,能够损伤此类记忆〔31,32〕;当延迟时间逐渐增加,老年组的学习能力明显低于青年组〔27〕。在啮齿类动物中,研究工作记忆常用的行为学模型包括:Torris迷宫,八臂迷宫等。Torris迷宫时间延迟依赖的任务中,老年组在长时间延迟中出现的错误探索次数明显高于青年组〔33〕。八臂迷宫测试也得到相似的结果,老年组探索已选臂的次数显著高于青年组,随着延迟时间的增加,错误臂的探索次数也随之增加〔34,35〕。在大鼠延迟唤起的水迷宫任务中,发现相似的结果:延迟为30 min时,老年组到达平台所需时间与青年组无差异;延迟从2 h增加至6 h,老年组到达平台所需时间逐渐增加,且与青年组有明显差异〔36〕。

认知灵活性是指:当先前获得的信息或者反应条件已不适应新的状态时,做出的抑制性反应。这一能力依赖于前额叶皮层,并且存在年龄易感性〔37〕。人类和灵长类研究发现:当先前奖赏相关的线索已变成无效线索时,老年组很难做出适应性的调整〔38〕;用啮齿动物所做研究,也得到相似的结果〔39〕。

Dias等〔40〕对威斯康星卡牌分类实验(WCST)进行修改,使其可用于灵长类动物。其中包括两种行为转换:内维度转换(IDS)和外维度转换(EDS),IDS是指对于两个颜色和形状均不同的物体,受试者最初选择用颜色区分,那么随后任务中也要用颜色作区分;而EDS则是在随后的任务中用形状作区分。研究发现:损毁背外侧前额叶皮层能够损伤EDS任务。采用拟人类 WCST也可用于检测啮齿类动物前额叶认知灵活性的注意定势转移任务。研究发现,衰老组的IDS任务表现与青年组相比,差异无统计学意义;而青年组EDS任务表现则明显优于衰老组〔41〕。

2衰老相关认知功能损伤的神经生物学机制

2.1突触可塑性缺失与衰老相关的认知损伤突触可塑性的改变是衰老相关认知功能下降可能的调控因素之一。皮层和海马脑区的树突棘与突触数量会因衰老而发生变化。人类和灵长类的研究发现,衰老组额叶皮层的突触密度降低与任务测试时表现出的活性降低呈正相关〔42,43〕。衰老同样能够导致大鼠海马齿状回区的突触数量减少〔44〕;该脑区突触数量减少是衰老大鼠空间记忆损伤的可能机制。大鼠海马脑区长时程增强的诱导和维持会因衰老而减弱,相反长时程抑制的诱导会因衰老而易化〔45〕。突触可塑性也受到神经元钙离子浓度的调控。衰老大鼠神经元的钙离子内稳态被破坏会导致突触可塑性的改变。衰老大鼠海马CA1脑区的电压门控钙离子内流增加,这一变化会损伤神经元细胞内的离子缓冲能力〔46〕。在人类和灵长类研究发现,衰老组皮层神经元对钙结合蛋白1的免疫反应性降低〔47〕。衰老个体前额叶皮层的钙结合蛋白1的mRNA表达水平降低,这一变化会影响钙离子的内稳态以及突触可塑性〔48〕。

2.2蛋白质合成能力下降与衰老相关的认知损伤早在60年代,Flexner等〔49~51〕发现,颞叶脑区新的蛋白质合成是长时程记忆表达所必需,并提示新皮层脑区的蛋白合成为记忆巩固阶段所必需。随着研究的逐步深入,研究者发现:在环境性恐惧记忆和抑制回避模型训练后,立即给予大鼠或小鼠脑区注射蛋白酶合成抑制剂茴香霉素,能够损伤长时程记忆(训练后24 h测试)〔52,53〕。小鼠的社会认知模型也得到了相似的结果〔54〕。编码长时程记忆需要新的蛋白质合成,然而,这一合成能力同样会随着衰老而逐渐降低。为此,Flexner等〔49〕提出:随年龄增加导致蛋白质合成减少,可能是衰老所致认知功能降低的原因。随着实验方法的逐步改进,研究者们发现:在啮齿动物脑中,蛋白合成从出生开始增加,至6个月达到顶峰,之后逐渐降低〔55~57〕,但是,也有研究者对出现降低的时间提出异议〔58〕。尽管如此,研究者们仍对于衰老导致蛋白翻译减少这一观点持肯定态度。

其他研究者发现,在衰老动物中,记忆巩固阶段蛋白合成的时间窗出现改变。Davis等〔59〕研究发现:不同年龄段小鼠(2~3月龄,6~7月龄,14~15月龄)训练抑制性回避任务后,即刻注射蛋白酶合成抑制剂茴香霉素,能够损伤3个年龄组动物7 d后的长时程记忆;然而,在训练前10 min注射,仅能损伤14~15月龄组7 d后的长时程记忆。随后,Mizumori等〔60,61〕丰富了Davis等的实验:增加了17~20月龄组,并且在训练后20和30 min注射,得到相同结果。上述结果提示:记忆巩固过程在衰老小鼠脑中变得缓慢,这种缓慢的蛋白合成可能损伤记忆巩固。

后续研究的重点逐渐转移到转录调控水平:即早基因(IEG)具有激活迅速、一过性调控突触活性以及蛋白合成的特点〔62,63〕。IEG可分为两类:一类为可诱导的转录因子,另一类为可诱导的效应因子。研究发现,调控转录因子zif268可以调控晚期长时程增强和激活基因转录调控,在海马依赖的学习记忆中发挥关键作用〔64,65〕。衰老研究发现,衰老大鼠海马CA1脑区zif268 mRNA水平降低,同时行为学测试显示空间记忆能力降低〔66,67〕。另一调控转录因子c-fos的表达水平,也会随衰老而改变,但是研究结果并不一致〔68〕。活性依赖的细胞骨架相关蛋白为效应因子蛋白,参与树突可塑性,如果抑制Arc活性,能够选择性的阻断长时程增强(LTP)的维持及损伤长时程记忆〔69〕。同时,发现Arc表达水平随衰老而降低,与衰老所致的认知损伤呈正相关〔10,70〕。

近期研究发现,cAMP反应原件蛋白(CREB)活性的改变,可能是衰老相关认知损伤的调控因子之一。CREB能够参与海马依赖的记忆巩固〔71~73〕。学习任务和LTP能够诱导CREB的活性形式,即磷酸化的CREB(pCREB)〔74,75〕表达增加。pCREB在衰老的啮齿动物脑中含量降低,Monti等〔76〕发现:对5月龄和30月龄的大鼠,进行恐惧记忆训练,24 h后检测长时程记忆,衰老组出现认知损伤且pCREB/CREB比值明显低于5月龄组。CREB共活化因子-CREB结合蛋白(CBP)在衰老大鼠海马脑区含量也出现降低〔77〕。对3和15月龄大鼠脑区过表达CREB的研究发现,3月龄动物的空间记忆和抑制回避记忆没有变化,而15月龄大鼠的任务相关记忆有明显增强〔78〕;过表达cAMP抑制因子诱导性CAMP早期抑制剂(ICER)能够降低1 d和3 d的长时程记忆维持,而不影响训练后10 min的短时程记忆。大量研究结果提示,衰老动物调控蛋白合成能力的下降,导致了长时程记忆能力的受损。

2.3表观遗传与衰老相关的认知损伤表观遗传学机制,对神经系统功能调控发挥着重要作用。DNA甲基化和组蛋白乙酰化,是表观遗传学中两种重要的调控方式,主要通过动态可逆的调控核染色质重塑过程调控基因表达。直到1983年,发现异常的DNA甲基化参与肿瘤细胞生长〔79〕,这类调控机制才逐渐成为研究的焦点。

DNA甲基化是指在DNA甲基转移酶(DNMT)调控下,胞嘧啶的5'碳端连接上甲基的过程,该修饰会沉默DNA转录和抑制下游蛋白的翻译〔80〕。研究者们发现,环境恐惧训练能够增加海马脑区DNMT的表达,提高记忆抑制基因PP1甲基化的程度,减少PP1蛋白的翻译水平;去甲基化和转录激活突触可塑性基因reelin及脑源性神经营养因子(BDNF)的活性,进而调控海马依赖的长时程记忆的表达和维持〔81,82〕。Miller等〔83〕在前额叶皮层也有相似的发现:环境恐惧记忆的训练能够诱导钙调磷酸酶CaN基因高甲基化,降低CaN蛋白的表达,DNMT抑制剂能够干扰长时程记忆的维持以及调控CaN甲基化水平。随后,Oliveira等〔84〕发现,衰老小鼠的Dnmt3a2含量低于青年小鼠,外源性补充Dnmt3a2,能够逆转衰老所致海马依赖性认知功能的损伤,这一结果提示,DNA甲基化从转录前水平调控下游功能蛋白的水平,影响了衰老相关认知功能。

3衰老相关的认知功能损伤的预防

锻炼身体不仅能够降低心血管类疾病的发病率,还能直接促进认知功能,其调控机制包括:增加BDNF和其他神经生长因子的含量〔85,86〕。人群研究发现,长时间的有氧运动能够增强70~81岁年龄段女性的认知能力〔87〕。动物研究发现,丰富环境饲养对小鼠认知的改善优于单纯的有氧运动〔88〕。

降低氧化应激对DNA和其他大分子的损伤,是减缓衰老的理论治疗靶点之一。但实际操作存在很大的局限性:自由基的清除因子需要在脑内维持很高的浓度,才能有效改善氧化应激。流行病学调查发现,阿尔茨海默病患者饮食中添加大量维生素E或者选择性的单胺氧化酶抑制剂,能够在一定程度上改善认知损伤〔89〕。动物研究发现,衰老大鼠饮食中添加线粒体代谢合成产物乙酰化左旋弱碱和抗氧化剂硫辛酸盐,能够促进空间记忆,防止线粒体结构退化〔90〕。大鼠注射乙酰辅酶Q10,即线粒体电子传递链因子,能够起到神经保护作用〔91〕。

对蠕虫、果蝇和小鼠的研究发现,限制卡路里摄入能够明显延长寿命,并且促进机体对抗一系列衰老相关的病理变化。调控机制可能是通过调节去乙酰化酶家族基因的表达而实现〔92〕。研究证实:限制卡路里摄入能够改善啮齿动物和人类衰老所致的学习记忆功能损伤〔93,94〕。

4展望

通过研究发现,在衰老影响的诸多脑区中,海马和前额叶皮层尤为易感。脑区特异性的突触可塑性改变,以及调节信号通路中关键因子的转录和翻译水平的变化,可能是衰老相关认知功能损伤的主要诱因。全面深入了解衰老大脑信号传导、转录和翻译的调控机制,有助于清晰的认识脑衰老,以及脑衰老相关的认知损伤。如何将分子实验、动物实验以及临床实验多层面研究结果相结合,探索出有效的预防、改善衰老相关认知损伤的方法,是未来研究的重点。

5参考文献

1Agarwal SK.Primary attenuation of the aging process in humans:an integrative approach〔J〕.Discovery Life,2013;7(3):6-8.

2Albert M,Duffy FH,Naeser M.Nonlinear changes in cognition with age and their neuropsychologic correlates〔J〕.Can J Psychol,1987;2(41):141-57.

3Craik FI,Moscovitch M,McDowd JM.Contributions of surface and conceptual information to performance on implicit and explicit memory tasks〔J〕.J Exp Psychol Learn Mem Cogn,1994;4(20):864-75.

4Montgomery EB,Koller WC,LaMantia TJ,etal.Early detection of probable idiopathic Parkinson's disease:Ⅰ.Development of a diagnostic test battery〔J〕.Mov Disord,2000;3(15):467-73.

5Lai ZC,Moss MB,Killiany RJ,etal.Executive system dysfunction in the aged monkey:spatial and object reversal learning〔J〕.Neurobiol Aging,1995;6(16):947-54.

6Head E,Mehta R,Hartley J,etal.Spatial learning and memory as a function of age in the dog〔J〕.Behav Neurosci,1995;5(109):851-8.

7Bach ME,Barad M,Son H,etal.Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway〔J〕.Proc Natl Acad Sci USA,1999;9(96):5280-5.

8Persson J,Sylvester CY,Nelson JK,etal.Selection requirements during verb generation:differential recruitment in older and younger adults〔J〕.Neuroimage,2004;4(23):1382-90.

9Remy F,Mirrashed F,Campbell B,etal.Mental calculation impairment in Alzheimer's disease:a functional magnetic resonance imaging study〔J〕.Neurosci Lett,2004;1(358):25-8.

10Small SA,Chawla MK,Buonocore M,etal.Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially vulnerable to aging〔J〕.Proc Natl Acad Sci USA,2004;18(101):7181-6.

11Hedden T,Gabrieli JD.Insights into the ageing mind:a view from cognitive neuroscience〔J〕.Nat Rev Neurosci,2004;2(5):87-96.

12Nadel L,Moscovitch M.Memory consolidation,retrograde amnesia and the hippocampal complex〔J〕.Curr Opin Neurobiol,1997;2(7):217-27.

13Spencer WD,Raz N.Differential effects of aging on memory for content and context:a meta-analysis〔J〕.Psychol Aging,1995;4(10):527-39.

14McIntyre JS,Craik FI.Age differences in memory for item and source information〔J〕.Can J Psychol,1987;2(41):175-92.

15Goldstein LH,Canavan AG,Polkey CE.Cognitive mapping after unilateral temporal lobectomy〔J〕.Neuropsychologia,1989;2(27):167-77.

16Foster TC.Involvement of hippocampal synaptic plasticity in age-related memory decline〔J〕.Brain Res Brain Res Rev,1999;3(30):236-49.

17Phillips RG,LeDoux JE.Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning〔J〕.Behav Neurosci,1992;2(106):274-85.

18Ward MT,Oler JA,EJ M.Hippocampal dysfunction during aging Ⅰ:deficits in memory consolidation〔J〕.Neurobiol Aging,1999;4(20):363-72.

19Houston FP,Stevenson GD,McNaughton BL,etal.Effects of age on the generalization and incubation of memory in the F344 rat〔J〕.Learn Mem,1999;2(6):111-9.

20Kishimoto Y,Suzuki M,Kawahara S,etal.Age-dependent impairment of delay and trace eyeblink conditioning in mice〔J〕.Neuroreport,2001;15(12):3349-52.

21Knuttinen MG,Gamelli AE,Weiss C,etal.Age-related effects on eyeblink conditioning in the F344 x BN F1 hybrid rat〔J〕.Neurobiol Aging,2001;1(22):1-8.

22Thompson LT,Moyer JR,Disterhoft JF.Trace eyeblink conditioning in rabbits demonstrates heterogeneity of learning ability both between and within age groups〔J〕.Neurobiol Aging,1996;4(17):619-29.

23Solomon PR,Groccia-Ellison ME.Classic conditioning in aged rabbits:delay,trace,and long-delay conditioning〔J〕.Behav Neurosci,1996;3(110):427-35.

24Finkbiner RG,Woodruff-Pak DS.Classical eyeblink conditioning in adulthood:effects of age and interstimulus interval on acquisition in the trace paradigm〔J〕.Psychol Aging,1991;1(6):109-17.

25Funahashi S,Bruce CJ,Goldman-Rakic PS.Dorsolateral prefrontal lesions and oculomotor delayed-response performance〔J〕.J Neurosci,1993;4(13):1479-97.

26Mair RG,Burk JA,Porter MC.Lesions of the frontal cortex,hippocampus,and intralaminar thalamic nuclei have distinct effects on remembering in rats〔J〕.Behav Neurosci,1998;4(112):772-92.

27Godefroy O,Cabaret M,Petit-Chenal V,etal.Control functions of the frontal lobes.Modularity of the central-supervisory system〔J〕.Cortex,1999;35(1):1-20.

28Brown VJ,Bowman EM.Rodent models of prefrontal cortical function〔J〕.Trends Neurosci,2002;7(25):340-3.

29Uylings HB,Groenewegen HJ,Kolb B.Do rats have a prefrontal cortex〔J〕?Behav Brain Res,2003;1-2(146):3-17.

30Kesner RP,Churchwell JC.An analysis of rat prefrontal cortex in mediating executive function〔J〕.Neurobiol Learn Mem,2011;3(96):417-31.

31Mishkin M.Effects of small frontal lesions on delayed alternation in monkeys〔J〕.J Neurophysiol,1957;6(20):615-22.

32Freedman M,Oscar-Berman M.Bilateral frontal lobe disease and selective delayed response deficits in humans〔J〕.Behav Neurosci,1986;3(100):337-42.

33Ramos BP,Birnbaum SG,Lindenmayer I,etal.Dysregulation of protein kinase a signaling in the aged prefrontal cortex:new strategy for treating age-related cognitive decline〔J〕.Neuron,2003;4(40):835-45.

34Luine V,Bowling D,Hearns M.Spatial memory deficits in aged rats:contributions of monoaminergic systems〔J〕.Brain Res,1990;1-2(537):271-278.

35Mizumori SJ,Barnes CA,McNaughton BL.Differential effects of age on subpopulations of hippocampal theta cells〔J〕.Neurobiol Aging,1992;6(13):673-9.

36Bizon JL,LaSarge CL,Montgomery KS,etal.Spatial reference and working memory across the lifespan of male Fischer 344 rats〔J〕.Neurobiol Aging,2009;4(30):646-55.

37Rapp PR,Amaral DG.Evidence for task-dependent memory dysfunction in the aged monkey〔J〕.J Neurosci,1989;10(9):3568-76.

38Steere JC,Arnsten AF.The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys〔J〕.Behav Neurosci,1997;5(111):883-91.

39Barense MD,Fox MT,Baxter MG.Aged rats are impaired on an attentional set-shifting task sensitive to medial frontal cortex damage in young rats〔J〕.Learn Mem,2002;4(9):191-201.

40Dias R,Robbins TW,Roberts AC.Dissociation in prefrontal cortex of affective and attentional shifts〔J〕.Nature,1996;6569(380):69-72.

41Rodefer JS,Nguyen TN.Naltrexone reverses age-induced cognitive deficits in rats〔J〕.Neurobiol Aging,2008;2(29):309-13.

42Liu X,Erikson C,Brun A.Cortical synaptic changes and gliosis in normal aging,Alzheimer's disease and frontal lobe degeneration〔J〕.Dementia,1996;3(7):128-34.

43Bourgeois J,Rakic P.Synaptogenesis in the occipital cortex of macaque monkey devoid of retinal input from early embryonic stages〔J〕.Eur J Neurosci,1996;5(8):942-50.

44Geinisman Y,Toledo-Morrell L,Morrell F.Loss of perforated synapses in the dentate gyrus:morphological substrate of memory deficit in aged rats〔J〕.Proc Natl Acad Sci USA,1986;9(83):3027-31.

45Norris CM,Korol DL,Foster TC.Increased susceptibility to induction of long-term depression and long-term potentiation reversal during aging〔J〕.J Neurosci,1996;17(16):5382-92.

46Thibault O,Landfield PW.Increase in single L-type calcium channels in hippocampal neurons during aging〔J〕.Science,1996;5264(272):1017-20.

47Geula C,Bu J,Nagykery N,etal.Loss of calbindin-D28k from aging human cholinergic basal forebrain:relation to to neuronal loss〔J〕.J Comp Neurol,2003;2(455):249-59.

48Cohen E,Paulsson JF,Blinder P,etal.Reduced IGF-1 signaling delays age-associated proteotoxicity in mice〔J〕.Cell,2009,6(139):1157-69.

49Flexner JB,Flexner LB,Stellar E.Memory in mice as affected by intracerebral puromycin〔J〕.Science,1963;3575(141):57-9.

50Flexner JB,Flexner LB,Stellar E,etal.Inhibition of protein synthesis in brain and learning and memory following puromycin〔J〕.J Neurochem,1962;(9):595-605.

51Flexner LB,Flexner JB,Roberts RB.Memory in mice analyzed with antibiotics〔J〕.Science,1967;3768(155):1377-83.

52Bourtchouladze R,Abel T,Berman N,etal.Different training procedures recruit either one or two critical periods for contextual memory consolidation,each of which requires protein synthesis and PKA〔J〕.Learn Mem,1998;4-5(5):365-74.

53Quevedo J,Vianna MR,Barichello T,etal.Protein synthesis,PKA,and MAP kinase are differentially involved in short- and long-term memory in rats〔J〕.Behav Brain Res,2004;2(154):339-43.

54Kogan JH,Frankland PW,Silva AJ.Long-term memory underlying hippocampus-dependent social recognition in mice〔J〕.Hippocampus,2000;1(10):47-56.

55Dwyer BE,Fando JL,Wasterlain CG.Rat brain protein synthesis declines during postdevelopmental aging〔J〕.J Neurochem,1980;3(35):746-9.

56Ekstrom R,Liu DS,Richardson A.Changes in brain protein synthesis during the life span of male Fischer rats〔J〕.Gerontology,1980;3(26):121-8.

57Ingvar MC,Maeder P,Sokoloff L,etal.Effects of ageing on local rates of cerebral protein synthesis in Sprague-Dawley rat〔J〕.Brain,1985;108(Pt 1):155-7.

58Smith CB,Sun Y,Sokoloff L.Effects of aging on regional rates of cerebral protein synthesis in the Sprague-Dawley rat:examination of the influence of recycling of amino acids derived from protein degradation into the precursor pool〔J〕.Neurochem Int,1995;4-5(27):407-16.

59Davis HP,Rosenzweig MR,Kinkade PT,etal.Effects of anisomycin on retention of the passive-avoidance habit as a function of age〔J〕.Exp Aging Res,1981;1(7):33-44.

60Mizumori SJ,Rosenzweig MR,Bennett EL.Long-term working memory in the rat:effects of hippocampally applied anisomycin〔J〕.Behav Neurosci,1985;2(99):220-32.

61Essman WB.Aging-related changes in retrograde amnesia for mice〔J〕.Gerontology,1982;5(28):303-13.

62Cole AJ,Saffen DW,Baraban JM,etal.Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation〔J〕.Nature,1989;6233(340):474-86.

63Dragunow M,Abraham WC,Goulding M,etal.Long-term potentiation and the induction of c-fos mRNA and proteins in the dentate gyrus of unanesthetized rats〔J〕.Neurosci Lett,1989;3(101):274-80.

64Abraham WC,Williams JM.Properties and mechanisms of LTP maintenance〔J〕.Neuroscientist,2003;6(9):463-74.

65Abraham WC,Williams JM.LTP maintenance and its protein synthesis-dependence〔J〕.Neurobiol Learn Mem,2008;3(89):260-8.

66Desjardins S,Mayo W,Vallee M,etal.Effect of aging on the basal expression of c-Fos,c-Jun,and Egr-1 proteins in the hippocampus〔J〕.Neurobiol Aging,1997;1(18):37-44.

67Blalock EM,Chen KC,Sharrow K,etal.Gene microarrays in hippocampal aging:statistical profiling identifies novel processes correlated with cognitive impairment〔J〕.J Neurosci,2003;9(23):3807-19.

68Touzani K,Marighetto A,Jaffard R.Fos imaging reveals ageing-related changes in hippocampal response to radial maze discrimination testing in mice〔J〕.Eur J Neurosci,2003;3(17):628-40.

69Guzowski JF,Lyford GL,Stevenson GD,etal.Inhibition of activity-dependent arc protein expression in the rat hippocampus〔J〕.J Neurosci,2000;11(20):3993-4001.

70Penner MR,Roth TL,Chawla MK,etal.Age-related changes in Arc transcription and DNA methylation within the hippocampus〔J〕.Neurobiol Aging,2011;12(32):2198-210.

71Guzowski JF,McGaugh JL.Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training〔J〕.Proc Natl Acad Sci USA,1997;6(94):2693-8.

72Frankland PW,Josselyn SA,Anagnostaras SG,etal.Consolidation of CS and US representations in associative fear conditioning〔J〕.Hippocampus,2004;5(14):557-69.

73Brightwell JJ,Smith CA,Countryman RA,etal.Hippocampal overexpression of mutant creb blocks long-term,but not short-term memory for a socially transmitted food preference〔J〕.Learn Mem,2005;1(12):12-7.

74Bito H,Deisseroth K,Tsien RW.CREB phosphorylation and dephosphorylation:a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression〔J〕.Cell,1996;7(87):1203-14.

75Taubenfeld SM,Wiig KA,Bear MF,etal.A molecular correlate of memory and amnesia in the hippocampus〔J〕.Nat Neurosci,1999;4(2):309-19.

76Monti B,Berteotti C,Contestabile A.Dysregulation of memory-related proteins in the hippocampus of aged rats and their relation with cognitive impairment〔J〕.Hippocampus,2005;8(15):1041-9.

77Chung YH,Kim EJ,Shin CM,etal.Age-related changes in CREB binding protein immunoreactivity in the cerebral cortex and hippocampus of rats〔J〕.Brain Res,2002;2(956):312-8.

78Mouravlev A,Dunning J,Young D,etal.Somatic gene transfer of cAMP response element-binding protein attenuates memory impairment in aging rats〔J〕.Proc Natl Acad Sci USA,2006;12(103):4705-10.

79Feinberg AP,Vogelstein B,Droller MJ,etal.Mutation affecting the 12th amino acid of the c-Ha-ras oncogene product occurs infrequently in human cancer〔J〕.Science,1983;4602(220):1175-7.

80Holliday R,Pugh JE.DNA modification mechanisms and gene activity during development〔J〕.Science,1975;4173(187):226-32.

81Lubin FD,Roth TL,Sweatt JD.Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory〔J〕.J Neurosci,2008;42(28):10576-86.

82Miller CA,Sweatt JD.Covalent modification of DNA regulates memory formation〔J〕.Neuron,2007;6(53):857-69.

83Miller CA,Gavin CF,White JA,etal.Cortical DNA methylation maintains remote memory〔J〕.Nat Neurosci,2010;6(13):664-6.

84Oliveira AM,Hemstedt TJ,Bading H.Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive〔J〕.Nat Neurosci,2012;8(15):1111-3.

85van Praag H,Shubert T,Zhao C,et al.Exercise enhances learning and hippocampal neurogenesis in aged mice〔J〕.J Neurosci,2005;38(25):8680-5.

86Kramer AF,Erickson KI,Colcombe SJ.Exercise,cognition,and the aging brain〔J〕.J Appl Physiol,2006;4(101):1237-42.

87Weuve J,Kang JH,Manson JE,etal.Physical activity,including walking,and cognitive function in older women〔J〕.JAMA,2004;12(292):1454-61.

88Wolf SA,Kronenberg G,Lehmann K,etal.Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein(APP)-23 model of Alzheimer's disease〔J〕.Biol Psychiatry,2006;12(60):1314-23.

89Sano M,Ernesto C,Thomas RG,etal.A controlled trial of selegiline,alpha-tocopherol,or both as treatment for Alzheimer's disease〔J〕.N Engl J Med,1997;17(336):1216-22.

90Liu J,Head E,Gharib AM,etal.Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation:partial reversal by feeding acetyl-L-carnitine and/or R-α-lipoic acid〔J〕.Proc Natl Acad Sci USA,2002;4(99):2356-61.

91Matthews RT,Yang L,Browne S,etal.Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects〔J〕.Proc Natl Acad Sci USA,1998;15(95):8892-7.

92Haigis MC,Guarente LP.Mammalian sirtuins-emerging roles in physiology,aging,and calorie restriction〔J〕.Genes Dev,2006;21(20):2913-21.

93Ingram Dk,Weindruch R,Spangler EL,etal.Dietary restriction benefits learning and motor performance of aged mice〔J〕.J Gerontol,1987;1(42):78-81.

94Witte AV,Fobker M,Gellner R,etal.Caloric restriction improves memory in elderly humans〔J〕.Proc Natl Acad Sci USA,2009;4(106):1255-60.

〔2014-07-20修回〕

(编辑安冉冉/张慧)

猜你喜欢
认知功能
运动员执行功能与反社会行为及攻击行为的关系
丁苯酞联合奥拉西坦治疗轻度血管性认知功能障碍的有效性和安全性
重复经颅磁刺激对器质性精神障碍患者认知功能的临床研究
脑梗死综合康复治疗效果评估及分析
单灶卒中后脑梗死部位与认知功能损害的相关性研究
老年认知信息平台的设计研究
利培酮对精神分裂症合并糖尿病患者的疗效及认知功能的影响
七氟烷和丙泊酚对老年肺癌根治术后认知功能的影响
七氟烷和丙泊酚对老年肺癌根治术后认知功能的影响
激素替代治疗对老年甲状腺功能减退患者认知功能的作用探讨