大肠埃希菌O127:H7植物组织内生化研究概况

2015-01-22 10:43杨黎汪海珍姚志远吴建军
关键词:埃希菌根际大肠

杨黎,汪海珍*,姚志远,吴建军

(浙江大学环境与资源学院土水资源与环境研究所,浙江省亚热带土壤与植物营养重点开放实验室,杭州310058)

大肠埃希菌O127:H7植物组织内生化研究概况

杨黎†,汪海珍†*,姚志远,吴建军

(浙江大学环境与资源学院土水资源与环境研究所,浙江省亚热带土壤与植物营养重点开放实验室,杭州310058)

人畜共患病原菌大肠埃希菌O157:H7是一种产志贺毒素的典型菌株,人体感染后会引起出血性腹泻和肠炎,且可并发溶血性尿毒综合征、血栓性血小板减少性紫癜等疾病,严重时可致人死亡.人畜粪肥携带的大肠埃希菌O157:H7等病原菌可通过污灌、径流、农田施用和昆虫传播等途径进入到土壤环境中,污染种植的水果和蔬菜,使其成为传播大肠埃希菌O157:H7的重要媒介,对公众健康构成了严重威胁.大肠埃希菌O157:H7可从植物表面自身通道(如气孔、皮孔和侧根发生处等)或表面损伤(生物损伤或物理损伤等)等途径进入植物体内,随宿主植物的细胞分化在植物体内繁殖,与宿主植物构成特殊的共生关系,但不形成特殊结构,也不引发植物体外观形态改变.然而,大肠埃希菌O157:H7植物内生化与植物体损伤程度、植物免疫系统及其模式识别受体(pattern recognition receptors,PRRs)、附生植物微生物群落和根际土壤微生物群落等因素之间存在复杂的交互作用.该文对大肠埃希菌O157:H7的污染来源、植物组织内生化途径及其影响因素等进行了综合的阐述,为深入了解人畜共患病原菌植物内生化机制和污染风险提供参考,以便降低人畜共患病原菌对人类健康和环境安全的危害.

大肠埃希菌O157:H7;植物;内生化

SummaryShiga toxin-producing Escherichia coli O157:H7,one of the most emergent foodborne pathogens,can cause illnesses ranging from diarrhea to hemorrhagic colitis and hemolytic-uremic syndrome.Escherichia coli O157:H7 is spread into the environment via fecal shedding or field application of farm effluent.The produce can be contaminated by E.coli O157:H7 through soil,feces,irrigation water,manure application,insects,or postharvest washing.Fresh produces,especially leafy greens that be consumed raw,are increasingly being recognized as the foremost transmitting vehicles.Many studies have shown that E.coli O157:H7 can internalize within a variety of tissue types.Although the internalized E.coli O157:H7 makes no difference to the normal growth of plants,it brings risks when people take in the unpasteurized fresh food.In this review,sources of contamination,main routes of internalization,interactions between internalized E.coli O157:H7 and the plant host as well as other microbeswere stated.

The internalization of E.coli O157:H7 in fresh produce has been found to be associated with many routes including stomata,lenticels,sites of root emergence and sites of biological or physical damage.Because stomata are generally found in greater densities on the underside of leaves,greater internalization of E.coli O157:H7 on leaves would be likely on the abaxial side than on the adaxial side.Root uptake of E.coli O157:H7 and subsequent internalization has also been widely reported.Damaged leaves release more nutrients onto the leaf surface,which allow E.coli O157:H7 to grow and induce more E.coli O157:H7 to get into the leaves.Various factors including growth substrate,inoculums level,and plant species and cultivar,have shown to affect the level of internalization.

Although there is no obvious change on the appearance of the plant,complicated interactions between internalized E.coli O157:H7 and the plant hosts have been discovered.Plant hosts have some pattern recognition receptors(PRRs)to recognize pathogen associated molecular patterns(PAMPs),and further activate plant immune response to limit the growth and spread of the pathogen.PAMPs contain flagellin,peptidoglycan,lipopolysaccharide,and other components which derived from pathogens.Studies have showed that elimination of these PAMPs leads to better growth of E.coli O157:H7 in the plant.Furthermore,phytopathogen can grow in the plant through secreting effector proteins to disturb the recognition of PAMPs by PRRs.Whether human pathogen currently carries the effector proteins is yet to be determined.Further research is needed to explain the mechanism of E.coli O157:H7 invasion and growth in the plant hosts.In addition,interactions between E.coli O157:H7 and the epiphytic microbes would affect the internalization of E.coli O157:H7.The metabolic products of the epiphytic microbes and the competition of nutrients between E.coli O157:H7 and the epiphytic microbes could limit the growth of E.coli O157:H7.On the other hand,some epiphytic microbes could produce available carbon sources to help E.coli O157:H7 grow and get into the plant hosts.

In short,better understanding of the internalization of E.coli O157:H7 in plants and risks will be helpful in reducing the pathogenic infection to human.Further researches remain to be done in revealing the molecular and genetic details of the mechanisms that are involved to control the contamination of fresh produce by human pathogenic bacteria.

微生物引起的食源性疾病是我国头号食品安全问题,亦受到世界上其他国家的极大关注[1].其中,因畜禽粪便携带的人畜共患病原菌(如沙门菌、大肠埃希菌O157:H7等)污染农产品而引发的食源性疾病及危害,目前受到了人们的特别关注.研究表明,人感染10个大肠埃希菌O157:H7活菌即可致病,导致患者出现剧烈腹痛,引起出血性结肠炎甚至溶血性尿毒综合征[2].近年来,大肠埃希菌O157:H7在全球许多国家导致多起暴发流行,且引起的食源性疾病病死率较高,是国际公认的食源性致病菌之一.其暴发主要与食用大肠埃希菌O157:H7污染的水果和蔬菜有关,这些蔬菜涉及芽苗菜、菠菜、生菜、凉拌卷心菜、番茄、各种瓜类、苹果汁、色拉等.大肠埃希菌O157:H7病原微生物可随农用污水、污泥或畜禽粪便等有机废弃物的添加进入土壤,并在土壤中存活,其存活时间可达数天乃至数百天[3-7],并可附着于生鲜农产品表面或内生化植物体内造成污染[8-12].

细菌植物内生化是指细菌通过植物表面自身通道(如气孔、皮孔和侧根发生处等)或表面损伤(生物损伤或物理损伤等)各种途径进入到植物组织的细胞间和细胞内,随植物的细胞分化而进入中柱并在植物体内繁殖,与植物构成共生关系但不形成特殊结构的一种现象[13-14].植物病原菌进入植物体可使植物致病,受植物病原菌侵害的宿主植物在外观上有别于正常植株[15],而人畜共患病原菌进入植物体后植物无外观表现,不易被察觉.研究发现,植物体可对内生化的大肠埃希菌O157:H7形成保护,表面杀菌剂难以将其消灭;大肠埃希菌O157:H7进入植物体内后,宿主植物体内的某些物质成分可作为病原菌生长所需的营养物质,但与此同时,宿主植物也会分泌一系列物质来抑制内生化病原菌的繁殖与扩散,营养物质与抑菌物质作用的差异则决定了病原菌的内生化程度及其生长状况[10].

由于大肠埃希菌O157:H7致病的严重性,其在生鲜农产品上内生化的情况亦引起了国内外研究者的重视.本文基于国内外近年来的研究进展,对大肠埃希菌O157:H7来源、植物内生化途径及其影响因素等进行简要综述,为深入了解大肠埃希菌O157:H7植物内生化机制和污染风险提供参考.

1 植物体中大肠埃希菌O157:H7的来源

大肠埃希菌O157:H7可通过多种途径附着于植物表面,但植物表面温度波动频繁、温差大、湿度低、营养物质缺乏等因素都抑制了病原菌在植物体表的繁殖,这或许是迫使大肠埃希菌O157:H7进入植物体的诱因之一[16].对于病原菌进入植物体内大致可归为3种主要途径:污水灌溉、粪肥施用和昆虫传播.

1.1 污水灌溉

大肠埃希菌O157:H7可在水中存活相当长的时间,采用受病原菌污染的农用水进行灌溉,病原菌可随水流动,附着于植物体表面,当大肠埃希菌O157:H7随水流动至植物体表通道或伤口时停留并伺机进入植物体内[17].有实验结果显示,生菜种子播种前,将其浸泡于含有大肠埃希菌O157:H7的水中,经过42 h的育苗培养,在生菜幼苗根系表面和叶际表面均可检测到大肠埃希菌O157:H7的存在[18].此时,大肠埃希菌O157:H7虽未发生植物内生化,但病原菌在植物体表的停留却大大增加了病原菌进入到植物体内的风险.Solomon等[19]用含有大肠埃希菌O157:H7的污水对生菜进行灌溉(污水不接触生菜地上部分),5 d后可在植物体内检测到病原菌的存在;而当灌溉污水与植物体地上部分直接接触时,5 d后病原菌内生化发生的概率明显升高[20].将无病原菌污染的菠菜幼苗置于含有大肠埃希菌O157:H7的营养液中培养,经过7 d培养后,可在茎中检测到大肠埃希菌O157:H7的存在[21].也有证据表明,生鲜农产品在收割后清洗,植物体表面的病原菌极易随水流动并通过主茎进入植物体内[22].

1.2 粪肥施用

畜禽粪便是优质的有机肥料,但大肠埃希菌O157:H7等病原菌的检出率较高,畜禽粪便作为肥料或土壤改良剂施用是大肠埃希菌O157:H7污染农产品的主要来源之一[2].我国虽无大型的大肠埃希菌O157:H7爆发流行,但随粪肥的添加,大肠埃希菌O157:H7也被带入土壤,为病原菌进入植物体提供了途径.与此同时,粪肥中营养物质更为丰富,使得土壤中大肠埃希菌O157:H7的存活时间更长[23],平均持续时间可达56 d以上[24].Ingham等[25]发现,在粉质黏壤土中添加未经堆肥处理的牛粪,大肠埃希菌O157:H7的存活时间可达90 d以上,是对照组的两倍.Solomon等[19]的实验结果也证明,施用含有大肠埃希菌O157:H7的粪肥后,可在生菜中检测到病原菌的内生化,且大肠埃希菌O157:H7可在植物体内长距离移动,叶片中也检出病原菌的存在.Looper等[26]用牛尾草做实验,施用大肠埃希菌O157:H7污染的粪肥,4 d便可检测到病原菌内生化的现象.

1.3 昆虫传播

引起农产品中大肠埃希菌O157:H7污染的来源还可能是一些昆虫的媒介活动,其传播范围广,且具有不定向性,从而增加了病原菌植物内生化的传播途径和范围[27].携带病原菌的昆虫与植物体反复接触以及植物体表面损伤共同作用,是导致蔬菜污染并引发食源性疾病的重要原因.Talley等[28]的研究结果表明,家蝇可以携带大肠埃希菌O157:H7,污染生长的菠菜和生菜.也有实验表明,果蝇唇瓣环沟处是大肠埃希菌O157:H7的主要聚集处,其携带病原菌时间可长于7 d;将携带大肠埃希菌O157:H7的果蝇与苹果接触,15 h后可在苹果内部检测到大肠埃希菌O157:H7的存在;另外,雌性果蝇将产卵器插入植物表皮以下进行产卵时,可将大肠埃希菌O157:H7带入苹果中,增大了食用风险[29].

2 大肠埃希菌O157:H7植物内生化途径

细菌侵袭宿主细胞主要有2种机制[30]:一种是细菌配体与细胞相应受体结合后,细菌被宿主细胞膜包裹而摄入,被称为“拉链(zipper)”机制;另一种是细菌依赖TTSS(typeⅢsecretion/translocation systems)系统将效应蛋白转运至宿主细胞,并通过“触发(trigger)”机制诱导细菌进入宿主细胞.这些效应蛋白可诱导细胞骨架重排,导致“巨吞饮”,促使细菌入侵.但众多研究结果表明,病原菌无法利用这种机制进入植物体内,所以大多通过植物天然孔道和受损部位进入植物体内[31].

气孔作为叶片重要组成部分,其活动由其周边的保卫细胞调节,在生理上具有重要的意义,是植物碳同化、呼吸、蒸腾等代谢作用中空气和水蒸气的通路,同样也是植物地上部分病原菌最易入侵的天然通道[32].相关研究已证明,大肠埃希菌O157:H7可通过气孔进入生菜和菠菜植株中[33-35].Er i c k s on等[36]的研究发现,在喷雾灌溉条件下大肠埃希菌O157:H7在叶片背面聚集更多,数量显著高于叶片正面;在光照条件下叶片正面水分更易挥发,温度更高,不利于病原菌适应环境.而陆生植物叶片气孔多数分布在叶片背面,这也就相应地为病原菌内生化提供了条件.

根系为植株提供物理支撑的同时,也是营养吸收的主要来源,是植株必不可少的结构.根系随植株的生长不断向土壤延伸,与土壤直接接触并产生表面磨损,使得病原菌更易进入土壤根系.对比土壤栽种和营养液培养发现,植物在土壤中栽培时,大肠埃希菌O157:H7更易发生植物内生化现象[21].通过显微镜观察发现,大肠埃希菌O157:H7通过侵入拟南芥根系的侧根发生处从而进入植物体[37].亦有相关实验证明,大肠埃希菌O157:H7可从污染土壤中进入植物根部,再从植物内部迁移至地上部分[19].另外,在离根轴表面数毫米之内的根际微域土区,植物根系不断地分泌各种代谢产物,为微生物的生命活动提供了源源不断的营养源[38].Ibekwe等[39]的实验发现,在大肠埃希菌O157:H7污染的土壤中,根际土壤中的病原菌浓度显著高于非根际土壤.

同样,大肠埃希菌O157:H7也可通过表皮损伤进入植物体内,例如物理损伤和生物损伤.植物体表面损伤,甚至是肉眼不可见的损伤,也可为大肠埃希菌O157:H7的侵入和繁殖创造条件.有实验表明,在人为割伤或黄杆菌造成生物损伤的叶片上浇灌含有大肠埃希菌O157:H7的水后,10 d内可持续检测到植物体内大肠埃希菌O157:H7的存在[40].也有研究者发现,割伤部位会分泌出伤流液,其中的一些成分会为病原菌的生长提供营养物质,伤口部位也为病原菌进入植物体内开辟了通道.如大肠埃希菌O157:H7易附着在生菜叶[41]、苹果[42]的割伤部位繁殖.

3 大肠埃希菌O157:H7与宿主植物间的相互作用

大肠埃希菌O157:H7进入植物体后,宿主植物虽未表现出表观的病变,但仍与病原菌在内部发生相互作用,而这些相互作用的程度决定了大肠埃希菌O157:H7植物内生化的程度.

3.1 植物先天免疫反应

在植物与病原菌协同进化过程中,也逐渐形成了一系列复杂高效的保护机制来抵御病原菌的侵染.宿主植物体内存在一系列植物模式识别受体(pattern recognition receptors,PRRs)可识别病原菌鞭毛蛋白、肽聚糖、脂多糖等相关分子模式(pathogen associated molecular patterns,PAMPs),以迅速触发基础免疫,包括超敏反应、活性氧爆发、植物抗毒素的产生以及一些抗病相关基因的表达.此类防御反应可以有效地抑制病原菌的生长和移动,控制病情[43-44].大肠埃希菌O1 5 7:H7具有许多病原菌相关分子模式,可被宿主植物先天免疫系统识别;有相关实验证明,消除这类病原菌相关分子模式可增加大肠埃希菌O157:H7植物内生化的数量[45].

3.2 效应因子蛋白对植物先天免疫反应的抑制

研究发现,植物病原菌可分泌特殊的效应因子蛋白(effector proteins)进入植物的细胞质中与宿主蛋白发生作用,通过影响信号传导来抑制植物模式识别受体(pattern recognition receptors,PRRs)对病原菌的识别,从而降低植物对外来侵入病原体的免疫作用,使得病原体在植物体内大量积累[4647].而人畜共患病原菌是否存在这种机制抑制宿主植物的免疫效应还有待更多实验来证明.但通过基因分析发现,大肠埃希菌中多数与致病基因相关的编码效应因子蛋白的基因与植物病原菌中的基因相似,即可能会存在不同物种间基因的水平转移,且人畜共患病原菌可适应相当广范围的宿主植物内环境也可能与此有关[48].值得一提的是,人畜共患病原菌或可分泌效应蛋白直接作用于宿主细胞,刺激宿主细胞合成糖转运蛋白,分泌单糖到质外体空间,为病原菌的生长提供营养条件[49].

3.3 效应因子蛋白触发的免疫反应

宿主植物细胞可对病原菌分泌的效应因子蛋白进行检测,这种效应触发免疫力是宿主植物针对病原微生物效应因子蛋白进化出的反击机制:通过直接或间接识别病原菌分泌的某些抗性效应因子蛋白,在侵染位点启动快速剧烈的防御应答,来抑制病原菌植物内生化[44,50].目前暂无相关实验数据表明这种宿主植物对病原菌效应因子蛋白的识别作用在植物体与人畜共患病原菌间发生,但进一步的研究也可能会选育出抗人畜共患病原菌的作物品种.

4 大肠埃希菌O157:H7与其他微生物间的交互作用

4.1 附生植物微生物群落

大肠埃希菌O157:H7可进入植物体内,附生植物微生物的存在同样影响着大肠埃希菌O157:H7植物内生化的程度和存活时间.人畜共患病原菌若要在植物表面或植物体内寄居,必须与存在于植物表面或内部的微生物群落进行竞争.植物体的附生微生物和外来入侵的病原菌之间存在着对生存空间和营养物质的争夺,且附生微生物的代谢产物可抑制病原菌的内生化与生长[16,51].如Lopez-Velasco等[52]的研究发现,欧文菌对大肠埃希菌O157:H7生长的抑制不仅表现在对碳源的争夺上,其代谢产物也可显著抑制大肠埃希菌的生长速率.

与此相反,附生植物微生物对大肠埃希菌O157:H7植物内生化亦有促进作用.存在于植物体内的其他细菌或真菌具有分解细胞壁上聚合物的能力,大肠埃希菌O157:H7或可利用这些被分解后的小分子物质完成自己的营养摄取[51].同时,植物病原菌会对植物体表面造成损伤,以伤口为中心的微环境恰好为大肠埃希菌O157:H7的繁殖提供了条件.另有研究发现,大肠埃希菌O157:H7的植物内生化有时是与其他一种或多种肠杆菌属或假单胞菌属的细菌共同侵入的结果,与附生微生物的共同侵入提高了病原菌侵入后的生长水平[50,53].

4.2 根际土壤微生物群落

根际环境土壤p H值、氧化还原电位、养分浓度和微生物活性的变化等均与土体土壤有明显差异,根系分泌物则决定了根际微生物的种类和活性[38].根际微生物群落对病原菌植物内生化影响较为复杂和多变,目前研究还较少.已发现的抑制大肠埃希菌O157:H7生长的细菌有假单胞菌、欧文菌、不动杆菌、微小杆菌和芽孢杆菌等[36].植物病原菌侵染根部可破坏细胞膜透性,使细胞内化合物以扩散方式释放至根际[54].从营养物质获取层面上而言,这有益于大肠埃希菌O157:H7的营养物质获取.最新研究发现,土壤中大肠埃希菌O157:H7的存活时间与微生物生物量碳和土壤氮含量间呈显著正相关,而与土壤绿弯菌的丰度呈显著负相关[5].病原菌侵染根部将导致根的分泌作用加强,根际周围微生物种群数量增加,使得病原菌与根际微生物群落间的交互作用更为复杂[55].因此,更多的有关根系分泌物、土著微生物种类、土壤类型等因素对病原菌存活及进入植物体的影响有待进一步研究.

5 前景与展望

目前,无论是病原菌植物内生化路径跟踪监测水平,还是人们对内生菌遗传特性及内生菌与宿主之间关系的了解来看,内生菌相关研究都处于初级阶段.特别是内生菌与宿主关系方面,有许多值得深入探讨的地方.比如内生菌增强宿主生存的适应性的相关机制,内生菌与宿主交互过程等,均需要进一步研究.大肠埃希菌O157:H7植物内生化程度受土壤种类、病原菌浓度、植株种类和品种、植株生长水平等多种因素影响,近年来逐渐引起公众的注意.更细致化地了解其内生化机制将有助于对大肠埃希菌O157:H7植物内生化的控制,从而减少人类食用生鲜农产品的风险,更加有效地预防大肠埃希菌O157:H7给人类造成的危害.

(References):

[1] 毛雪丹,胡俊峰,刘秀梅.微生物性食源性疾病流行病学负担研究方法与应用.中华预防医学杂志,2010,44(6):546-549. Mao X D,Hu J F,Liu X M.Method and application of the epidemiological burden on foodborne diseases caused by microorganism.Chinese Journal of Preventive Medicine,2010,44(6):546-549.(in Chinese)

[2] 王燕,谢贵林,杜琳.大肠杆菌O157:H7感染流行概况.微生物学免疫学进展,2008,36(1):51-58.

Wang Y,Xie G L,Du L.Review of infectious and epidemiological characteristics of Escherichia coli O157:H7. Progress in Microbiology and Immunology,2008,36(1):51-58.(in Chinese)

[3] Zhang T X,Wang H Z,Wu L S,et al.Survival of Escherichia coli O157:H7 in soils from Jiangsu Province,China.PLoS ONE,2013,8(12):e81178.

[4] Yao Z Y,Wei G,Wang H Z,et al.Survival of Escherichia coli O157:H7 in soils from vegetable fields with different cultivation patterns.Applied and Environmental Microbiology,2013,79(5):1755-1756.

[5] Wang H Z,Ibekwe A M,Ma J C,et al.A glimpse of Escherichia coli O157:H7 survival in soils from eastern China.Science of the Total Environment,2014,476:49-56.

[6] Franz E,Semenov A V,Termorshuizen A J,et al.Manureamended soil characteristics affecting the survival of E.coli O157:H7 in 36 Dutch soils.Environmental Microbiology,2008,10(2):313-327.

[7] Patel J,Millner P,Nou X,et al.Persistence of enterohaemorrhagic and nonpathogenic E.coli on spinach leaves and in rhizosphere soil.Journal of AppliedMicrobiology,2010,108(5):1789-1796.

[8] Berger C N,Sodha S V,Shaw R K,et al.Fresh fruit and vegetables as vehicles for the transmission of human pathogens.Environmental Microbiology,2010,12(9):2385-2397.

[9] Gurtler J B,Douds Jr D D,Dirks B P,et al.Salmonella and Escherichia coli O157:H7 survival in soil and translocation into leeks(Allium porrum)as influenced by an arbuscular mycorrhizal fungus(Glomus intraradices).Applied and Environmental Microbiology,2013,79(6):1813-1820.

[10] Marilyn C E,Jean L,Alison S P,et al.Preharvest internalization of Escherichia coli O157:H7 into lettuce leaves,as affected by insect and physical damage.Journal of Food Protection,2010,73(10):1809-1816.

[11] Erickson M C,Webb C C,Davey L E,et al.Internalization and fate of Escherichia coli O157:H7 in leafy green phyllosphere tissue using various spray conditions.Journal of Food Protection,2014,77(5):713-721.

[12] Schikora A,Carreri A,Charpentier E,et al.The dark side of the salad:Salmonella typhimurium overcomes the innate immune response of Arabidopsis thaliana and shows an Endo pathogenic lifestyle.PLoS ONE,2008,3(5):e2279.

[13] 石晶盈,陈维信,刘爱媛.植物内生菌及其防治植物病害的研究进展.生态学报,2006,26(7):2395-2401. Shi J Y,Chen W X,Liu A Y.Advances in the study of endophytes and their effects on control of plant disease.Acta Ecologica Sinica,2006,26(7):2395-2401.(in Chinese with English abstract)

[14] 李阜棣,胡正嘉.微生物学.北京:中国农业出版社,2007:318-320. Li F D,Hu Z J.Microbiology.Beijing:China Agriculture Press,2007:318-320.(in Chinese)

[15] 耿锐梅,张建萍,余柳青.植物病原菌毒素的种类、作用机理和应用前景.浙江农业学报,2007,19(5):393-398. Geng R M,Zhang J P,Yu L Q.The kinds,action mechanism of pathotoxin and its application prospect.Acta Agriculturae Zhejiangensis,2007,19(5):393-398.(in Chinese with English abstract)

[16] Liao C H,Fett W F.Analysis of native microflora and selection of strains antagonistic to human pathogens on fresh produce.Journal of Food Protection,2001,64(8):1110-1115.

[17] Dev V J,Main M,Gould I.Waterborne outbreak of Escherichia coli O157.Journal of Applied Microbiology Symposium Supplement,2000,88(S1):124-132.

[18] Warriner K,Ibrahim F,Dickinson M,et al.Interaction of Escherichia coli with growing salad spinach plants.Journal of Food Protection,2003,66(10):1790-1797.

[19] Solomon E B,Yaron S,Matthews K R.Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization.Applied and Environmental Microbiology, 2002,68(1):397-400.

[20] Barker-Reid F,Harapas D,Engleitner S,et al.Persistence of Escherichia coli on injured iceberg lettuce in the field,overhead irrigated with contaminated water.Journal of Food Protection,2009,72(3):458-464.

[21] Macarisin D,Patel J,Sharma V K.Role of curli and plant cultivation conditions on Escherichia coli O157:H7 internalization into spinach grown on hydroponics and in soil.International Journal of Food Microbiology,2014,173:48-53.

[22] Penteado A L,Eblen B S,Miller A J.Evidence of Salmonella internalization into fresh mangos during simulated postharvest insect disinfestation procedures. Journal of Food Protection,2004,67(1):181-184.

[23] Islam M,Doyle M P,Phatak S C,et al.Survival of Escherichia coli O157:H7 in soil and on carrots and onions grown in fields treated with contaminated manure composts or irrigation water.Food Microbiology,2005,22(1):63-70.

[24] Johannessen G S,Bengtsson G B,Heier B T,et al. Potential uptake of Escherichia coli O157:H7 from organic manure into Crisphead lettuce.Applied and Environmental Microbiology,2005,71(5):2221-2225.

[25] Ingham S C,Losinski J A,Andrews M P,et al.Escherichia coli contamination of vegetables grown in soils fertilized with non-composted bovine manure:Garden-scale studies. Applied and Environmental Microbiology,2004,70(11):6420-6427.

[26] Looper M L,Edrington T S,Callaway T R,et al.Fate of Escherichia coli O157:H7 and Salmonella from contaminated manure slurry applied to soil surrounding tall fescue.Letters in Applied Microbiology,2009,48(5):513-516.

[27] 徐正涛,周振涛,丁强.赣榆县常见蝇类携带病原菌及其耐药状况研究.医学动物防制,2011,27(12):1082-1085. Xu Z T,Zhou Z T,Ding Q.Study on the pathogenic bacteria carries status of flies and antibiotic resistance of Ganyu. Chinese Journal of Pest Control,2011,27(12):1082-1085.(in Chinese with English abstract)

[28] Talley J L,Wayadande A C,Wasala L P,et al.Association of Escherichia coli O157:H7 with filth flies(Muscidae and Calliphoridae)captured in leafy greens fields and experimental transmission of E.coli O157:H7 to spinach leaves by house flies(Diptera:Muscidae).Journal of Food Protection,2009,72(7):1547-1552.

[29] Sela S,Nestel D,Pinto R,et al.Mediterranean fruit fly as a potential vector of bacterial pathogens.Applied and Environmental Microbiology,2005,71(7):4052-4056.

[30] 王雪琴,周道国.沙门菌侵袭研究进展.微生物与感染,2009,4(2):124-128. Wang X Q,Zhou D G.Research progress on the invasion of Salmonella typhimurium.Journal of Microbes and Infection,2009,4(2):124-128.(in Chinese)

[31] Kroupitski Y,Golberg D,Belausov E,et al.Internalizationof Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Applied and Environmental Microbiology,2009,75(19):6076-6086.

[32] Zeng W Q,Melotto M,He S Y.Plant stomata:A checkpoint of host immunity and pathogen virulence.Current Opinion in Biotechnology,2010,21(5):599-603.

[33] Gomes C,Da Silva P,Moreira R G,et al.Understanding E.coli internalization in lettuce leaves for optimization of irradiation treatment.International Journal of Food Microbiology.2009,135(3):238-247.

[34] Saldaña Z,Sánchez E,Xicohtencatl-Cortes J,et al.Surface structures involved in plant stomata and leaf colonization by Shiga-toxigenic Escherichia coli O157:H7.Frontiers in Microbiology,2011,119(2):1-9.

[35] Xicohtencatl-Cortes J,Sanchez C E,Saldana Z,et al. Interaction of Escherichia coli O157:H7 with leafy green produce.Journal of Food Protection,2009,72(7):1531-1537.

[36] Erickson M C,Webb C C,Diaz-Perez J C,et al.Surface and internalized Escherichia coli O157:H7 on field-grown spinach and lettuce treated with spray-contaminated irrigation water. Journal of Food Protection,2010,73(6):1023-1029.

[37] Cooley M B,Miller W G,Mandrell R E.Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae.Applied and Environmental Microbiology,2003,69(8):4915-4926.

[38] 朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述.生态环境,2003,12(1):102-105. Zhu L X,Zhang J E,Liu W G.Review of studies on interactions between root exudates and rhizospheric microorganism.Ecology and Environment,2003,12(1):102-105.(in Chinese)

[39] Ibekwe A M,Watt P M,Shouse P J,et al.Fate of Escherichia coli O157:H7 in irrigation water on soils and plants as validated by culture method and real-time PCR. Canadian Journal of Microbiology,2004,50(12):1007-1014.

[40] Aruscavage D,Miller S A,Ivey M L,et al.Survival and dissemination of Escherichia coli O157:H7 on physically and biologically damaged lettuce plants.Journal of Food Protection,2008,71(12):2384-2388.

[41] Seo K H,Frank J F.Attachment of Escherichia coli O157:H7 to lettuce leaf surface and bacterial viability in response to chlorine treatment as demonstrated by using confocal scanning laser microscopy.Journal of Food Protection,1999,62(1):3-9.

[42] Janisiewicz W J,Conway W S,Brown M W,et al.Fate of Escherichia coli O157:H7 on fresh-cut apple tissue and its potential for transmission by fruit flies.Applied and Environmental Microbiology,1999,65(1):1-5.

[43] Ausubel F M.Are innate immune signaling pathways in plants and animals conserved?Nature Immunology,2005,6(10):973-979.

[44] 陈英,谭碧玥,黄敏仁.植物天然免疫系统研究进展.南京林业大学学报:自然科学版,2012,36(1):129-136. Chen Y,Tan B Y,Huang M R.Recent advances in plant immune system.Journal of Nanjing Forestry University:Natural Science Edition,2012,36(1):129-136.(in Chinese with English abstract)

[45] Iniguez A L,Dong Y,Carter H D,et al.Regulation of enteric endophytic bacterial colonization by plant defenses. Molecular Plant-Microbe Interactions,2005,18(2):169-178.

[46] Wu Y,Wood M D,Tao Y,et al.Direct delivery of bacterial avirulence proteins into resistant Arabidopsis protoplasts leads to hypersensitive cell death.Plant Journal,2003,33(1):131-137.

[47] Jones J D G,Dangl J L.The plant immune system.Nature,2006,444(7117):323-329.

[48] Tobe T,Beatson S A,Taniguchi H,et al.An extensive repertoire of typeⅢsecretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proceedings of the National Academy of Sciences,2006,103(40):14941-14946.

[49] Chen L,Hou B,Lalonde S,et al.Sugar transporters for intercellular exchange and nutrition of pathogens.Nature,2010,468(7323):527-532.

[50] Cooley M B,Chao D,Mandrell R E.Escherichia coli O157:H7 survival and growth on lettuce is altered by the presence of epiphytic bacteria.Journal of Food Protection,2006,69(10):2329-2335.

[51] Brandl M T.Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on postharvest lettuce.Applied and Environmental Microbiology,2008,74(17):5285-5289.

[52] Lopez-Velasco G,Tydings H A,Boyer R R,et al. Characterization of interactions between Escherichia coli O157:H7 with epiphytic bacteria in vitro and on spinach leaf surfaces.International Journal of Food Microbiology,2012,153(3):351-357.

[53] Johnston M A,Harrison M A,Morrow R A.Microbial antagonists of Escherichia coli O157:H7 on fresh-cut lettuce and spinach.Journal of Food Protection,2009,72(7):1569-1575.

[54] Martha C H,Gilberto C R,Xiong Z G,et al.Roles of root border cells in plant defense and regulation of rhizosphere microbial populations by extracellular DNA‘trapping’. Plant and Soil,2012,355(1/2):1-16.

[55] Pawel B,Chian K,Paul S L.Not a peripheral issue:secretion in plant-microbe interactions.Current Opinion in Plant Biology,2010,13(4):378-387.

Progress of researches on the internalization of Escherichia coli O127:H7 in plant tissues.Journal of
Zhej iang University(Agric.&Li fe Sci.),2015,41(1):82-88

Yang Li†,Wang Haizhen†*,Yao Zhiyuan,Wu Jianjun(Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition,Institute of Soil and Water Resource and Environmental Science,College of Environment &Resource Sciences,Zhejiang University,Hangzhou 310058,China)

Escherichia coli O157:H7;plant;internalization

X 171;R 378.2

A

10.3785/j.issn.1008-9209.2014.07.212

国家自然科学基金资助项目(40971255).

汪海珍,Tel:+86 571 88982063;E-mail:mywhz@163.com

联系方式:杨黎,E-mail:chengche0808@163.com;汪海珍,E-mail:mywhz@163.com.†为共同第一作者

2014 07 21;接受日期(Accepted):2014 10 31;

日期(Published online):2015 01 19 URL:http://www.cnki.net/kcms/detail/33.1247.S.20150119.1659.008.html

猜你喜欢
埃希菌根际大肠
早实薄皮核桃根际与非根际土壤微生物多样性分析
2018年-2020年凉山彝族地区临床分离大肠埃希菌耐药性检测分析
产ESBLs大肠埃希菌的感染特点及耐药性分析
根际微生物对植物与土壤交互调控的研究进展
植物根际土壤生态研究进展
大肠憩室是什么病
2017年至2020年昆明市儿童医院血流感染大肠埃希菌和肺炎克雷伯菌的耐药性
土壤质地及砧木影响苹果根际微生物功能多样性及其碳源利用
大肠变懒了
大肠变懒 了