赵晨 王蕾
组织工程修复肩袖损伤促进腱骨愈合的研究进展
赵晨王蕾
组织工程;干细胞;胞间信号肽类和蛋白质类;肩关节;腱损伤;创伤和损伤
肩关节已成为继腰背、膝关节之后运动系统疼痛的第三大好发部位[1],特别是在 60 岁以上的老年人群中,肩袖损伤是引起肩关节疼痛的最主要原因[2],并且常伴有功能减退及睡眠障碍等。普通人群调查显示[3],肩袖全层撕裂的患病率为 22.1% (147 / 664),其中无症状患者约为有症状的两倍,并随年龄的增长而增加[4-9]。肩袖损伤的处理是复杂的,对于非手术治疗失败的患者可行手术一期修补[10]。关节镜下肩袖修补术已成为肩袖损伤修复的“金标准”,具有创伤小、并发症少等优点[11],可以使绝大多数患者肩关节功能恢复以及长期的疼痛缓解[4,12-19]。随着对疾病认识的不断加深和外科技术的发展,肩袖修补术在临床中取得令人满意的效果,但术后影像学随访发现解剖结构的生物学修复成功率较低[4],肩袖再撕裂的发生率文献报道也不尽相同[5,8,19-27],但仍然较高,尤其是长期的退变性大面积破裂的修复更容易失败,可高达94%[7,28]。失败的原因是多方面的,可能与患者的年龄及身体状况、撕裂的大小部位及持续性、肌腱的质量、肌肉萎缩及退变、肌腹脂肪浸润、修复的技术和术后康复等因素有关[5,14,19-20,27,29-36]。最主要的原因是很难重建正常的腱骨界面且过程缓慢。
肩袖是包绕在肱骨头维持肱盂关节运动和稳定性的一组肌肉,肩袖损伤常涉及到一个或多个肌腱逐渐退变而导致与肱骨相结合的部位撕裂[33,37]。正常的腱骨结合结构由四层细胞类型、组织成分、机械性能及功能各不相同的过渡区域构成:致密纤维结缔组织、未钙化的纤维软骨、钙化的纤维软骨和骨组织。尽管进行适当的手术干预以及经历正常的愈合过程,肩袖残端与其肱骨插入点重新愈合的能力却是有限的,无法再生成损伤前正常组织学腱骨结合结构[23-24,26,38-41]。为了使愈合的肌腱成功的重新整合到骨组织,需要提供一个理想的条件,提高肌腱细胞的活性增强新陈代谢,重建组织的生物力学特性,进而加速腱骨愈合,最终形成正常的腱骨插入点[33,35,42-44]。
因此,寻找有效促进肩袖腱骨愈合的最佳策略成为目前临床及实验室研究的热点,新颖的生物学方法及材料应运而生:生长因子[45]、修补支架[20,46]以及干细胞[47]的应用等。现就组织工程技术治疗肩袖损伤促进腱骨愈合问题综述如下。
生长因子是一组细胞因子及蛋白,具有诱导有丝分裂、产生细胞外基质、促进血管形成及细胞成熟分化等作用[29,41,48-49]。在肩袖修复愈合的早期,可发现多种生长因子短暂的特异性表达,包括:血小板源性生长因子 (platelet derived growth factor,PDGF)、骨形成蛋白(bone morphogenetic proteins,BMPs)、成纤维细胞生长因子 (basic fibroblast growth factor,bFGF)、转化生长因子 β(transforming growth factor-β,TGF-β)等[4,29,36,41-42,50-51]。腱骨愈合的过程常经历三个连续的时相:炎症反应期、修复期及重塑期[24,26,44],在不同的阶段,不同的生长因子发挥不同的作用。
PDGF 来源于血小板和平滑肌细胞,在肌腱损伤后7~14 天释放达到最高峰,参与炎症反应的终末期和修复期的起始[52]。PDGF 由 A、B 两个亚基构成,有三个主要的亚型:AA,AB 和 BB。在过去的研究中,PDGF-BB被证实具有促进细胞增殖分化,刺激趋化作用,促进细胞外基质的产生、表面信号分子表达及新生血管形成的作用[53]。Hoppe 等[54]发现,与正常人类肩袖的插入点相似,在体外 PDGF 同样可以促进腱细胞增殖及细胞外基质的合成。运用大鼠肩袖急性损伤模型,Kovacevic 等[55]将 rhPDGF-BB 附载于 I 型胶原支架直接经骨隧道缝合肌腱断端,证实在损伤修复的早期 PGGF-BB 可以刺激细胞增殖,诱导新生血管形成。组织形态学检查在术后第 5 天表现出剂量依赖的促进作用,而至第 28 天与对照组相比PGGF-BB 对纤维软骨的形成和胶原纤维的成熟没有太大影响。
BMPs 是一类属于 TGF-β 超家族,对骨、软骨、肌腱和韧带发育和再生有重要作用的细胞因子,超过 20 余种[56-57]。研究表明 BMP7、BMP12 和 BMP13 可以促进肌腱形成及肩袖损伤的修复[58-60]。Kabuto 等[59]在 SD 大鼠肩袖损伤修复模型的研究中,利用水凝明胶薄膜持续释放 BMP7 促进腱骨愈合。以腱骨成熟度评分最大负荷拉力为标准来评价组织修复的好坏,在第 8 周组织形态学检验发现插入点形成良好的软骨基质及肌腱,相对于对照组生物力学及组织学都得到恢复。同样以大鼠为动物模型,Lamplot 等[61]设计外源性表达 BMP13 与富血小板血浆(PRP)实验室对照试验,结果表明肌腱损伤后 2 周,只有腱骨界面局部注射 BMP13 组有效促进肌腱愈合,与阴性对照及 PRP 组相比 BMP13 更有效的上调 III 型胶原形成,具有更好的抗张力强度。外源性表达 BMP13 可以有效地促进肌腱愈合降低再撕裂的发生率。
bFGF 不仅由血液中的白细胞产生,肌腱细胞及成纤维细胞也可释放。在肩袖修复的整个过程中都表达高度上调,促进新血管形成及成纤维细胞增殖[23,29]。Zhao 等[62]建立大鼠慢性肩袖损伤模型,将 bFGF 附载聚乳酸-羟基乙酸共聚物 (PLGA)静电纺丝膜经骨隧道缝合离断的岗上肌附着点,在第 2、4、8 周分别进行组织学和生物力学检测,bFGF-PLGA 显著提高腱骨界面胶原组织形成,促进纤维软骨化,最大载荷及刚度优于对照及单纯 PLGA 组。
TGF-β 有三个亚型:TGF-β1,TGF-β2,TGF-β3。动物实验显示[63],在肩袖撕裂后冈上肌中 TGF-β 大量释放促进纤维化,在腱骨愈合中具有重要的作用。然而 Kim等[64]认为尽管 TGF-β 亚型在腱骨界面重建过程中扮演重要角色,在岗上肌止点局部缓释外源性 TGF-β 却很难促进腱骨界面形成生物学结构正常的插入点。
当前,补片支架已被美国食品药品监督管理局批准为人用肩袖修补医疗器械[20]。新一代肩袖修补支架技术迅速发展,利用仿生学在分子结构和形态学一定程度上模仿细胞外基质结构和功能。肩袖修补术应用支架装置增强修复,而不仅仅是连接不可修补性撕裂的肌腱缺损,支架可由生物学材料和高分子合成材料或二者混合制成,每种材料各有优缺点[46]。
生物学支架依照其来源可分为自体、同种异体和异种移植物[65],具有良好的内在生物学特性,对细胞触发降解、重塑敏感,可传递生物信息等优点。然而生物学支架存在制作材料纯化、相关并发症、免疫原性、病原体传播可能以及较差的力学特性等问题,促使新型合成材料的兴起[66]。这些合成支架一类主要成分是耐久的非可降解高分子聚合物:聚碳酸酯、聚氨基甲酸乙酯和聚四氟乙烯等,具有卓越的可塑性及抗牵拉强度,但较易碎裂,在组织中持续存在常影响肌腱生长并可引起持续性感染[46]。另一类是可生物降解合成材料,它随着新组织的形成 (同时继续维持生物力学性能)逐渐消失,为组织细胞提供基质支架,具有良好的生物相容性、可塑性。可生物降解支架常由左旋聚乳酸 (PLLA)、PLGA、聚乙酸内酯等新型高分子材料合成[67]。
Breidenbach 等[68]利用功能性组织工程学技术设计具有适当机械性能的支架,并依据细胞表型、细胞外基质及组织超微结构将正常肌腱的生物学参数标识分类,然后优选在肌腱正常发育和自然愈合过程中相对重要的生物学参数,模拟体内环境下肌腱的机械和生物学性能设计出适当的支架。3 D 静电纺丝纳米纤维支架具有和细胞外基质(ECM)相似的形态学结构可有效促进细胞生长,有利于组织愈合[69-71]。Zhao 等[72]报道,在大鼠慢性肩袖撕裂模型中局部应用明胶 PLLA 静电纺丝支架修复腱骨结合点,与对照组相比有大量纤维软骨和胶原基质形成,生物力学评价同样明显优于对照组。
骨髓是最常用的干细胞提取资源,通常情况下,BMSCs 通过髂棘穿刺获取,然而在临床中,可能会给患者带来额外的创伤[73]。因此,新近研究表明,在进行关节镜下肩袖修补术的同时运用肱骨头穿刺[74]或骨髓刺激技术使肱骨大结节微骨折[75],同样可以获取 BMSCs,不再需要额外的手术操作及在其它部位进行手术。Kida 等[76]在大鼠肩袖损伤模型中运用肱骨头穿刺技术研究发现,机体 BMSCs 可以穿过肌腱插入点的钻孔,爬入待修复的肩袖,促进腱骨愈合,但临床研究证据尚不充足。最近,Hernigou 等[47]报告了 10 年的随访结果,45 例接受关节镜下标准肩袖修补术 (单排)浓缩 BMSCs 辅助治疗者,术后10 年,与配对对照组未接受浓缩 BMSCs 治疗的 45 例,比较预后结果。BMSCs 治疗组有 39 例 (87%)肌腱完整,而对照组只有 20 例 (44%);再撕裂率也明显低于对照组。
肌腱干细胞 (ten don stem cells,TDSCs)来源于肌腱组织,有研究证实,肌腱中含有少量具有普通干细胞特性的细胞群,它可以自我更新克隆生成,并有多向分化的能力[77]。尽管相关机制不清,理论上 TDSCs 能够促进腱骨界面的再生。Cheng 等[78]报道,TDSCs 促进腱骨愈合可能跟分泌 TNF-α 刺激基因 / 蛋白 6 (TSG6)有关,TSG6 可以机体对损伤信号的反应,降低炎症反应,并能够阻止纤维化,因此可以增强腱骨界面的结构和附着强度。
随着组织工程技术的飞速进展,新的治疗策略合理应用是促进腱骨愈合必需的条件。生长因子激活肌腱修复起始的级联反应,修复支架模仿肩袖肌腱的结构、功能及生物力学特性,细胞疗法直接将干细胞置放于损伤部位促进腱骨界面的重建。每种治疗方式都有各自的优点,多种策略联合应用或许是最有效的方法:生物支架为种子细胞生长提供基质,同时作为药物载体缓释生长因子,各种生物活性因子调节细胞增殖分化,诱导不同的细胞活动。在这些策略成为骨科标准治疗措施之前,严格的临床前转化研究和临床试验来检验它们的安全性及效能是至关重要的。应用这些干预措施促进肩袖腱骨愈合同样面临更多的挑战,各方法具体作用机制尚未完全明确,在临床中可操作性有待改进,以及个体化应用指征缺乏权威标准等。总之,肩袖损伤修复重建腱骨界面过程较为复杂,目前运用组织工程学方法促进腱骨愈合在动物实验中取得一定进展,有着巨大的研究空间和潜力,为运动医学发展提供广阔的应用前景。
[1]Tekavec E, Jöud A, Rittner R, et al. Population-based consultation patterns in patients with shoulder pain diagnoses. BMC Musculoskelet Disord, 2012, 13:238.
[2]Murrell GA Walton JR, Diagnosis of rotator cuff tears. Lancet,2001, 357(9258):769-770.
[3]Minagawa H, Yamamoto N, Abe H, et al. Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: From mass-screening in one village. J Orthop,2013, 10(1):8-12.
[4]McCormack RA, Shreve M, Strauss EJ. Biologic augmentation in rotator cuff repair--should we do it, who should get it, and has it worked? Bull Hosp Jt Dis (2013), 2014, 72(1):89-96.
[5]Le BT, Wu XL, Lam PH, et al. Factors predicting rotator cuff retears: an analysis of 1000 consecutive rotator cuff repairs. Am J Sports Med, 2014, 42(5):1134-1142.
[6]Yamaguchi K, Ditsios K, Middleton WD, et al. The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J Bone Joint Surg Am, 2006, 88(8):1699-1704.
[7]Teunis T, Lubberts B, Reilly BT, et al. A systematic review and pooled analysis of the prevalence of rotator cuff disease with increasing age. J Shoulder Elbow Surg, 2014, 23(12):1913-1921.
[8]Duquin TR, Buyea C, Bisson LJ. Which method of rotator cuff repair leads to the highest rate of structural healing?A systematic review. Am J Sports Med, 2010, 38(4):835-841.
[9]Leal MF, Belangero PS, Figueiredo EA, et al. Identifcation of suitable reference genes for gene expression studies in tendons from patients with rotator cuff tear. PLoS One, 2015, 10(3):e0118821.
[10]Marx RG, Koulouvaris P, Chu SK, et al. Indications for surgery in clinical outcome studies of rotator cuff repair. Clin Orthop Relat Res, 2009, 467(2):450-456.
[11]Randelli P, Bak K, Milano G. State of the art in rotator cuff repair. Knee Surg Sports Traumatol Arthrosc, 2015, 23(2):341-343.
[12]Spennacchio P, Banf G, Cucchi D, et al. Long-term outcome after arthroscopic rotator cuff treatment. Knee Surg Sports Traumatol Arthrosc, 2015, 23(2):523-529.
[13]Chuang MJ, Jancosko J, Nottage WM. Clinical outcomes of single-row arthroscopic revision rotator cuff repair. Orthopedics, 2014, 37(8):e692-698.
[14]Paxton ES, Teefey SA, Dahiya N, et al. Clinical and radiographic outcomes of failed repairs of large or massive rotator cuff tears: minimum ten-year follow-up. J Bone Joint Surg Am, 2013, 95(7):627-632.
[15]Stuart KD, Karzel RP, Ganjianpour M, et al. Long-term outcome for arthroscopic repair of partial articular-sided supraspinatus tendon avulsion. Arthroscopy, 2013, 29(5):818-823.
[16]Denard PJ, Jiwani AZ, Ladermann A, et al. Long-term outcome of a consecutive series of subscapularis tendon tears repaired arthroscopically. Arthroscopy, 2012, 28(11):1587-1591.
[17]Jarrett CD, Schmidt CC. Arthroscopic treatment of rotator cuff disease. J Hand Surg Am, 2011, 36(9):1541-1552.
[18]Boughebri O, Roussignol X, Delattre O, et al. Small supraspinatus tears repaired by arthroscopy: are clinical results infuenced by the integrity of the cuff after two years?Functional and anatomic results of forty-six consecutive cases.J Shoulder Elbow Surg, 2012, 21(5):699-706.
[19]Schmidt CC, Jarrett CD, Brown BT. Management of rotator cuff tears. J Hand Surg Am, 2015, 40(2):399-408.
[20]Ricchetti ET, Aurora A, Iannotti JP, et al. Scaffold devices for rotator cuff repair. J Shoulder Elbow Surg, 2012, 21(2):251-265.
[21]Nho SJ, Delos D, Yadav H, et al. Biomechanical and biologic augmentation for the treatment of massive rotator cuff tears. Am J Sports Med, 2010, 38(3):619-629.
[22]DeFranco MJ, Bershadsky B, Ciccone J, et al. Functional outcome of arthroscopic rotator cuff repairs: a correlation of anatomic and clinical results. J Shoulder Elbow Surg, 2007,16(6):759-765.
[23]Weeks 3rd KD, Dines JS, Rodeo SA, et al. The basic science behind biologic augmentation of tendon-bone healing: a scientifc review. Instrcourse Lect, 2014, 63:443-450.
[24]Smith L, Xia Y, Galatz LM, et al. Tissue-engineering strategies for the tendon/ligament-to-bone insertion. Connect Tissue Res,2012, 53(2):95-105.
[25]Lubiatowski P, Kaczmarek P, Dzianach M, et al. Clinical and biomechanical performance of patients with failed rotator cuff repair. Int Orthop, 2013, 37(12):2395-2401.
[26]Thomopoulos S, Genin GM, Galatz LM. The development and morphogenesis of the tendon-to-bone insertion-what development can teach us about healing. J Musculoskelet Neuronal Interact, 2010, 10(1):35-45.
[27]McElvany MD, McGoldrick E, Gee AO, et al. Rotator cuff repair: published evidence on factors associated with repair integrity and clinical outcome. Am J Sports Med, 2015, 43(2):491-500.
[28]Vastamaki M, Lohman M, Borgmastars N. Rotator cuff integrity correlates with clinical and functional results at a minimum 16 years after open repair. Clin Orthop Relat Res,2013, 471(2):554-561.
[29]Ahmad Z, Henson F, Wardale J, et al. Review article: Regenerative techniques for repair of rotator cuff tears. J Orthop Surg(Hong Kong), 2013, 21(2):226-231.
[30]Bjornsson HC, Norlin R, Johansson K, et al. The infuence of age, delay of repair, and tendon involvement in acute rotator cuff tears: structural and clinical outcomes after repair of 42 shoulders. Acta Orthop, 2011, 82(2):187-192.
[31]Abtahi AM, Granger EK, Tashjian RZ. Factors affecting healing after arthroscopic rotator cuff repair. World J Orthop,2015, 6(2):211-220.
[32]Mall NA, Tanaka MJ, Choi LS, et al. Factors affecting rotator cuff healing. J Bone Joint Surg Am, 2014, 96(9):778-788.
[33]Huegel J, Williams AA, Soslowsky LJ. Rotator cuff biology and biomechanics: a review of normal and pathological conditions. Curr Rheumatol Rep, 2015, 17(1):476.
[34]Lorbach O, Tompkins M. Rotator cuff: biology and current arthroscopic techniques. Knee Surg Sports Traumatol Arthrosc,2012, 20(6):1003-1011.
[35]Factor D, Dale B. Current concepts of rotator cuff tendinopathy. Int J Sports Phys Ther, 2014, 9(2):274-288.
[36]Lorbach O, Baums MH, Kostuj T, et al. Advances in biology and mechanics of rotator cuff repair. Knee Surg Sports Traumatol Arthrosc, 2015, 23(2):530-541.
[37]Cheung EV, Silverio L, Sperling JW. Strategies in biologic augmentation of rotator cuff repair: a review. Clin Orthop Relat Res, 2010, 468(6):1476-1484.
[38]Maffulli N, Longo UG, Loppini M, et al. Tissue engineering for rotator cuff repair: an evidence-based systematic review. Stem Cells Int, 2012, 2012:418086.
[39]Hernigou P, Merouse G, Duffiet P, et al. Reduced levels of mesenchymal stem cells at the tendon-bone interface tuberosity in patients with symptomatic rotator cuff tear. Int Orthop, 2015,39(6):1219-1225.
[40]Apostolakos J, Durant TJ, Dwyer CR, et al. The enthesis: a review of the tendon-to-bone insertion. Muscles Ligaments Tendons J, 2014, 4(3):333-342.
[41]Montgomery SR, Petrigliano FA, Gamradt SC. Biologic augmentation of rotator cuff repair. Curr Rev Musculoskelet Med, 2011, 4(4):221-230.
[42]Isaac C, Gharaibeh B, Witt M, et al. Biologic approaches to enhance rotator cuff healing after injury. J Shoulder Elbow Surg, 2012, 21(2):181-190.
[43]Liu YX, Thomopoulos S, Birman V, et al. Bi-material attachment through a compliant interfacial system at the tendon-to-bone insertion site. Mech Mater, 2012, 44.
[44]Edwards SL, Lynch TS, Saltzman MD, et al. Biologic and pharmacologic augmentation of rotator cuff repairs. J Am Acad Orthop Surg, 2011, 19(10):583-589.
[45]Akyol E, Hindocha S, Khan WS. Use of stem cells and growth factors in rotator cuff tendon repair. Curr Stem Cell Res Ther,2014, 10(1):5-10.
[46]Nossov S, Dines JS, Murrell GA, et al. Biologic augmentation of tendon-to-bone healing: scaffolds, mechanical load, vitamin D, and diabetes. Instr Course Lect, 2014, 63:451-462.
[47]Hernigou P, Flouzat Lachaniette CH, Delambre J, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: a case-controlled study. Int Orthop, 2014, 38(9):1811-1818.
[48]Angeline ME, Rodeo SA. Biologics in the management of rotator cuff surgery. Clin Sports Med, 2012, 31(4):645-663.
[49]Nixon AJ, Watts AE, Schnabel LV. Cell- and gene-based approaches to tendon regeneration. J Shoulder Elbow Surg,2012, 21(2):278-294.
[50]Longo UG, Rizzello G, Berton A, et al. Biological strategies to enhance rotator cuff healing. Curr Stem Cell Res Ther, 2013,8(6):464-470.
[51]Randelli P, Randelli F, Ragone V. Regenerative medicine in rotator cuff injuries. Biomed Res Int, 2014, 2014:129515.
[52]Oliva F, Via AG, Maffulli N. Role of growth factors in rotator cuff healing. Sports Med Arthrosc, 2011, 19(3):218-226.
[53]Bedi A, Maak T, Walsh C, et al. Cytokines in rotator cuff degeneration and repair. J Shoulder Elbow Surg, 2012, 21(2):218-227.
[54]Hoppe S, Alini M, Benneker LM, et al. Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors. J Shoulder Elbow Surg, 2013, 22(3):340-349.
[55]Kovacevic D, Gulotta LV, Ying L, et al. rhPDGF-BB promotesearly healing in a rat rotator cuff repair model. Clin Orthop Related Res, 2015, 473(5):1644-1654.
[56]Ratko TA, Belinson SE, Samson DJ, et al. AHRQ technology assessments. Bone morphogenetic protein: The state of the evidence of on-label and off-label use. Agency Healthcare Research Quality (US), 2010.
[57]Lorda-Diez CI, Montero JA, Garcia-Porrero JA, et al. Divergent differentiation of skeletal progenitors into cartilage and tendon: lessons from the embryonic limb. ACS Chem Biol,2014, 9(1):72-79.
[58]Chamberlain CS, Lee JS, Leiferman EM, et al. Effects of BMP-12-releasing sutures on Achilles tendon healing. Tissue Eng Part A, 2015, 21(5-6):916-927.
[59]Kabuto Y, Morihara T, Sukenari T, et al. Stimulation of rotator cuff repair by sustained release of bone morphogenetic protein-7 using a gelatinhydrogel sheet. Tissue Eng Part A,2015, 21(13-14):2025-2033.
[60]Schwarting T, Benolken M, Ruchholtz S, et al. Bone morphogenetic protein-7 enhances bone-tendon integration in a murine in vitro co-culture model. Int Orthop, 2015, 39(4):799-805.
[61]Lamplot JD, Angeline M, Angeles J, et al. Distinct effects of platelet-rich plasma and BMP13 on rotator cuff tendon injury healing in a rat model. Am J Sports Med, 2014, 42(12):2877-2887.
[62]Zhao S, Zhao J, Dong S, et al. Biological augmentation of rotator cuff repair using bFGF-loaded electrospun poly (lactideco-glycolide) fibrous membranes. Int J Nanomedicine, 2014,9:2373-2385.
[63]Liu X, Joshi SK, Ravishankar B, et al. Upregulation of transforming growth factor-beta signaling in a rat model of rotator cuff tears. J Shoulder Elbow Surg, 2014, 23(11):1709-1716.
[64]Kim HM, Galatz LM, Das R, et al. The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res, 2011, 52(2):87-98.
[65]Papalia R, Franceschi F, Zampogna B, et al. Augmentation techniques for rotator cuff repair. Br Med Bull, 2013, 105:107-138.
[66]Derwin KA, Badylak SF, Steinmann SP, et al. Extracellular matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg, 2010, 19(3):467-476.
[67]BaoLin G, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem, 2014, 57(4):490-500.
[68]Breidenbach AP, Gilday SD, Lalley AL, et al. Functional tissue engineering of tendon: Establishing biological success criteria for improving tendon repair. J Biomech, 2014, 47(9):1941-1948.
[69]Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers for regenerative medicine. Adv Healthc Mater, 2012, 1(1):10-25.
[70]Hakimi O, Murphy R, Stachewicz U, et al. An electrospun polydioxanone patch for the localisation of biological therapies during tendon repair. Eur Cell Mater, 2012, 24:344-357.
[71]Musson DS, Naot D, Chhana A, et al. In vitro evaluation of a novel non-mulberry silk scaffold for use in tendon regeneration. Tissue Eng Part A, 2015, 21(9-10):1539-1551.
[72]Zhao S, Xie X, Pan G, et al. Healing improvement after rotator cuff repair using gelatin-grafted poly (L-lactide) electrospun fbrous membranes. J Surg Res, 2015, 193(1):33-42.
[73]Beitzel K, Solovyova O, Cote MP, et al. The future role of mesenchymal stem cells in the management of shoulder disorders. Arthroscopy, 2013, 29(10):1702-1711.
[74]Beitzel K, McCarthy MB, Cote MP, et al. Comparison of mesenchymal stem cells (osteoprogenitors) harvested from proximal humerus and distal femur during arthroscopic surgery. Arthroscopy, 2013, 29(2):301-308.
[75]Jo CH, Shin JS, Park IW, et al. Multiple channeling improves the structural integrity of rotator cuff repair. Am J Sports Med,2013, 41(11):2650-2657.
[76]Kida Y, Morihara T, Matsuda K, et al. Bone marrow-derived cells from the footprint infltrate into the repaired rotator cuff. J Shoulder Elbow Surg, 2013, 22(2):197-205.
[77]Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med, 2007, 13(10):1219-1227.
[78]Cheng B, Ge H, Zhou J, et al. TSG-6 mediates the effect of tendon derived stem cells for rotator cuff healing. Eur Rev Med Pharmacol Sci, 2014, 18(2):247-251.
(本文编辑:李贵存)
Progress in tissue-engineering for tendon-to-bone healing after rotator cuff repair
ZHAO Chen, WANG Lei. Department of Orthopaedics, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai,200025, PRC
WANG Lei, Email: ray_wangs@hotmail.com
Rotator cuff injury, considered as a resource of pain, disability and dyssomnia to serious decline in the quality of life, is a common disorder of the shoulder joint. Basic principles of rotator cuff repair aim at achieving high initial fxation strength, maintaining mechanical stability and restoring the anatomic healing of the cuff tendon. After the routine surgical procedure for rotator cuff repair, the biology and histology of the normal enthesis are not restored. Tendon-to-bone healing occurs with a fbrovascular scar tissue interface that is mechanically inferior to the native insertion site, which may lead to high re-rupture rate. For these reasons, new approaches are required to improve structural healing. Tissue engineering strategies have been suggested to improve the biological environment around the bone-tendon interface and to promote regeneration of the native insertion site. Although experimental applications of growth factors and scaffolds on animal models demonstrate promising results, techniques which can be used in human rotator cuff repair are still very limited. Tissue engineering to improve tendon-to-bone healing has bright future and requires more research before its clinical applications. This review will outline therapies of growth factors, scaffolds and stem cells in tendon healing and rotator cuff repair.
Tissue engineering;Stem cells;Intercellular signaling peptides and proteins;Shoulder joint;Tendon;Wounds and injuries
10.3969/j.issn.2095-252X.2015.11.009
R318, R684
上海市卫生和计划生育委员会重点项目 (201440021)
200025 上海交通大学医学院附属瑞金医院骨科 (赵晨、王蕾);上海市伤骨科研究所 (赵晨)
王蕾,Email: ray_wangs@hotmail.com
2015-05-18)