大学数理统计教学中有关极大似然估计方法的课堂讲授

2014-11-11 10:27徐晨
中国校外教育(下旬) 2014年9期

徐晨

摘要 极大似然估计在参数的点估计方法中是一个重要的估计方法,并且其估计值有很多优良的统计性质。在教学中,由于此方法计算较为复杂,学生学习起来较为困难。主要介绍了极大似然估计的容易理解的课堂讲授方法。

关键词 大学数理统计教学 极大似然估计 点估计

统计学是一门分析整理数据,并由数据做出决策的综合性学科,它的使用范围几乎覆盖了社会科学和自然科学的各个领域,其中用到了大量的数学及其它学科的专业知识。大学中的数理统计课程中主要介绍了统计学中基本理论模型,为将来更好地应用统计方法奠定了良好的基础。学生需要先学习高等数学、线性代数、概率论等课程后,即可学习数理统计。数理统计中由数据推断总体信息时,推断总体未知参数的真值的取值为多少,这样的问题在数理统计中称为参数估计,具体分为点估计和区间估计。区间估计往往是点估计加减误差形式。可见,点估计是非常基础和重要的。常见的点估计方法有频率估计概率法,矩估计法,和极大似然估计法。其中前两个方法主要应用大样本理论给出的估计值,对于小样本的情况,估计值的误差比较大。而极大似然方法适用范围更广,其估计值也有很多优良特性。但是由于其方法实现起来比其他方法较为复杂,因此学生有时不能有效的掌握此方法,本文将结合作者多年的数理统计教学经验,对于课堂讲授极大似然估计方法提出一些心得与探讨。

一、介绍极大似然估计的基本想法极大似然估计中的想法非常自然:就是最有可能事情最容易发生,或者概率最大的事情最容易发生。因此,在看待任何一组随机试验结果时候,都可以认为是最有可能的事情发生了,而最有可能这个想法在数学中实现其实就是函数的极值问题。例如,这样一个问题:在一个不透明的袋子中有5个球,有白色和红色,除了颜色不一样以外剩下都一样。有放回的任取3次球,结果是:白球、红球、白球,请估计一下袋子中有几个白球?这个问题非常简单直观,向学生提问以后,很多学生都会回答:估计白球有3个,或者一部分学生会回答:估计白球3个或4个。进一步提问学生为什么这样估计,学生一般会回答:这样最有可能。此时就可以提示学生这就是极大似然估计的基本思想,是非常自然质朴的,每个人可能在不自觉中就使用了极大似然估计。现在需要的就是把这种思想转换成数理统计模型,并用数学方法解出来,这也是学习中非常重要的能力,把一般问题的数学模型给出来,并会分析解答。

二、统计模型的建立与求解上一例题中,试验结果可以用服从两点分布随机变量来表示,

三、容易出现的理解误区极大似然估计方法中,在求似然函数极大值时候,由于似然函数是边缘分布的连乘形式,因此在对似然函数直接求导讨论其单调性时,其求导结果较为复杂,不容易直接讨论。往往需要先对似然函数取对数,把连乘形式改成连加形式,然后再求导,求导结果相对简单,利于讨论单调性。这样做只是数学上的一个处理技巧,因为对数似然函数是一个复合函数,外层对数函数是单增函数,不改变里层似然函数的单调性。而同学们可能对这个数学处理技巧理解出现误区,把极大似然估计理解为一套算法,一组公式,死记硬背,时间长了就没有印象了。这样的学习效果对以后的进一步学习或应用此方法解决问题起不到良好的作用。相反的是,应让同学对极大似然估计的基本思想掌握牢固,并且极大似然估计的想法本身也很自然直接,而求似然函数的极值问题只不过是数学上的处理技巧,各种手段都可能用上,多加锻炼几次即可。如果同学对极大似然估计的想法理解透彻,不拘于具体数学解法,则有助于长时间和进一步地理解更为深刻的知识点,为将来学习和工作需要打下良好的基础。

四、结束语总之,在数理统计的教学中给学生讲授新的知识点时,主要的是对知识点基本思想的理解,让同学理解记忆知识点的内容,最后达到灵活地应用所学内容,拓展思维能力,锻炼解决技巧。

参考文献:

[1]杜军民,曹冬.紧扣教材,抓住重点,练在关键——极大似然估计的教学思考[J].江苏教育学院学报,2012,(6):42-44.

[2]程希明,王昕.渐进式系统教学方法探究——以概率论与数理统计教学为例[J].大学教育,2013,(17):95-97.endprint

摘要 极大似然估计在参数的点估计方法中是一个重要的估计方法,并且其估计值有很多优良的统计性质。在教学中,由于此方法计算较为复杂,学生学习起来较为困难。主要介绍了极大似然估计的容易理解的课堂讲授方法。

关键词 大学数理统计教学 极大似然估计 点估计

统计学是一门分析整理数据,并由数据做出决策的综合性学科,它的使用范围几乎覆盖了社会科学和自然科学的各个领域,其中用到了大量的数学及其它学科的专业知识。大学中的数理统计课程中主要介绍了统计学中基本理论模型,为将来更好地应用统计方法奠定了良好的基础。学生需要先学习高等数学、线性代数、概率论等课程后,即可学习数理统计。数理统计中由数据推断总体信息时,推断总体未知参数的真值的取值为多少,这样的问题在数理统计中称为参数估计,具体分为点估计和区间估计。区间估计往往是点估计加减误差形式。可见,点估计是非常基础和重要的。常见的点估计方法有频率估计概率法,矩估计法,和极大似然估计法。其中前两个方法主要应用大样本理论给出的估计值,对于小样本的情况,估计值的误差比较大。而极大似然方法适用范围更广,其估计值也有很多优良特性。但是由于其方法实现起来比其他方法较为复杂,因此学生有时不能有效的掌握此方法,本文将结合作者多年的数理统计教学经验,对于课堂讲授极大似然估计方法提出一些心得与探讨。

一、介绍极大似然估计的基本想法极大似然估计中的想法非常自然:就是最有可能事情最容易发生,或者概率最大的事情最容易发生。因此,在看待任何一组随机试验结果时候,都可以认为是最有可能的事情发生了,而最有可能这个想法在数学中实现其实就是函数的极值问题。例如,这样一个问题:在一个不透明的袋子中有5个球,有白色和红色,除了颜色不一样以外剩下都一样。有放回的任取3次球,结果是:白球、红球、白球,请估计一下袋子中有几个白球?这个问题非常简单直观,向学生提问以后,很多学生都会回答:估计白球有3个,或者一部分学生会回答:估计白球3个或4个。进一步提问学生为什么这样估计,学生一般会回答:这样最有可能。此时就可以提示学生这就是极大似然估计的基本思想,是非常自然质朴的,每个人可能在不自觉中就使用了极大似然估计。现在需要的就是把这种思想转换成数理统计模型,并用数学方法解出来,这也是学习中非常重要的能力,把一般问题的数学模型给出来,并会分析解答。

二、统计模型的建立与求解上一例题中,试验结果可以用服从两点分布随机变量来表示,

三、容易出现的理解误区极大似然估计方法中,在求似然函数极大值时候,由于似然函数是边缘分布的连乘形式,因此在对似然函数直接求导讨论其单调性时,其求导结果较为复杂,不容易直接讨论。往往需要先对似然函数取对数,把连乘形式改成连加形式,然后再求导,求导结果相对简单,利于讨论单调性。这样做只是数学上的一个处理技巧,因为对数似然函数是一个复合函数,外层对数函数是单增函数,不改变里层似然函数的单调性。而同学们可能对这个数学处理技巧理解出现误区,把极大似然估计理解为一套算法,一组公式,死记硬背,时间长了就没有印象了。这样的学习效果对以后的进一步学习或应用此方法解决问题起不到良好的作用。相反的是,应让同学对极大似然估计的基本思想掌握牢固,并且极大似然估计的想法本身也很自然直接,而求似然函数的极值问题只不过是数学上的处理技巧,各种手段都可能用上,多加锻炼几次即可。如果同学对极大似然估计的想法理解透彻,不拘于具体数学解法,则有助于长时间和进一步地理解更为深刻的知识点,为将来学习和工作需要打下良好的基础。

四、结束语总之,在数理统计的教学中给学生讲授新的知识点时,主要的是对知识点基本思想的理解,让同学理解记忆知识点的内容,最后达到灵活地应用所学内容,拓展思维能力,锻炼解决技巧。

参考文献:

[1]杜军民,曹冬.紧扣教材,抓住重点,练在关键——极大似然估计的教学思考[J].江苏教育学院学报,2012,(6):42-44.

[2]程希明,王昕.渐进式系统教学方法探究——以概率论与数理统计教学为例[J].大学教育,2013,(17):95-97.endprint

摘要 极大似然估计在参数的点估计方法中是一个重要的估计方法,并且其估计值有很多优良的统计性质。在教学中,由于此方法计算较为复杂,学生学习起来较为困难。主要介绍了极大似然估计的容易理解的课堂讲授方法。

关键词 大学数理统计教学 极大似然估计 点估计

统计学是一门分析整理数据,并由数据做出决策的综合性学科,它的使用范围几乎覆盖了社会科学和自然科学的各个领域,其中用到了大量的数学及其它学科的专业知识。大学中的数理统计课程中主要介绍了统计学中基本理论模型,为将来更好地应用统计方法奠定了良好的基础。学生需要先学习高等数学、线性代数、概率论等课程后,即可学习数理统计。数理统计中由数据推断总体信息时,推断总体未知参数的真值的取值为多少,这样的问题在数理统计中称为参数估计,具体分为点估计和区间估计。区间估计往往是点估计加减误差形式。可见,点估计是非常基础和重要的。常见的点估计方法有频率估计概率法,矩估计法,和极大似然估计法。其中前两个方法主要应用大样本理论给出的估计值,对于小样本的情况,估计值的误差比较大。而极大似然方法适用范围更广,其估计值也有很多优良特性。但是由于其方法实现起来比其他方法较为复杂,因此学生有时不能有效的掌握此方法,本文将结合作者多年的数理统计教学经验,对于课堂讲授极大似然估计方法提出一些心得与探讨。

一、介绍极大似然估计的基本想法极大似然估计中的想法非常自然:就是最有可能事情最容易发生,或者概率最大的事情最容易发生。因此,在看待任何一组随机试验结果时候,都可以认为是最有可能的事情发生了,而最有可能这个想法在数学中实现其实就是函数的极值问题。例如,这样一个问题:在一个不透明的袋子中有5个球,有白色和红色,除了颜色不一样以外剩下都一样。有放回的任取3次球,结果是:白球、红球、白球,请估计一下袋子中有几个白球?这个问题非常简单直观,向学生提问以后,很多学生都会回答:估计白球有3个,或者一部分学生会回答:估计白球3个或4个。进一步提问学生为什么这样估计,学生一般会回答:这样最有可能。此时就可以提示学生这就是极大似然估计的基本思想,是非常自然质朴的,每个人可能在不自觉中就使用了极大似然估计。现在需要的就是把这种思想转换成数理统计模型,并用数学方法解出来,这也是学习中非常重要的能力,把一般问题的数学模型给出来,并会分析解答。

二、统计模型的建立与求解上一例题中,试验结果可以用服从两点分布随机变量来表示,

三、容易出现的理解误区极大似然估计方法中,在求似然函数极大值时候,由于似然函数是边缘分布的连乘形式,因此在对似然函数直接求导讨论其单调性时,其求导结果较为复杂,不容易直接讨论。往往需要先对似然函数取对数,把连乘形式改成连加形式,然后再求导,求导结果相对简单,利于讨论单调性。这样做只是数学上的一个处理技巧,因为对数似然函数是一个复合函数,外层对数函数是单增函数,不改变里层似然函数的单调性。而同学们可能对这个数学处理技巧理解出现误区,把极大似然估计理解为一套算法,一组公式,死记硬背,时间长了就没有印象了。这样的学习效果对以后的进一步学习或应用此方法解决问题起不到良好的作用。相反的是,应让同学对极大似然估计的基本思想掌握牢固,并且极大似然估计的想法本身也很自然直接,而求似然函数的极值问题只不过是数学上的处理技巧,各种手段都可能用上,多加锻炼几次即可。如果同学对极大似然估计的想法理解透彻,不拘于具体数学解法,则有助于长时间和进一步地理解更为深刻的知识点,为将来学习和工作需要打下良好的基础。

四、结束语总之,在数理统计的教学中给学生讲授新的知识点时,主要的是对知识点基本思想的理解,让同学理解记忆知识点的内容,最后达到灵活地应用所学内容,拓展思维能力,锻炼解决技巧。

参考文献:

[1]杜军民,曹冬.紧扣教材,抓住重点,练在关键——极大似然估计的教学思考[J].江苏教育学院学报,2012,(6):42-44.

[2]程希明,王昕.渐进式系统教学方法探究——以概率论与数理统计教学为例[J].大学教育,2013,(17):95-97.endprint