张国春
摘 要:随着我国经济建设的不断发展,科学技术的进步和创新,地球物理勘探技术越来越广泛的应用在我国环境、资源和工程等领域。该文通过对普通地球物理勘探技术的应用进行研究分析,总结出地球物理勘探技术的应用以及发展趋势。
关键词:地球物理勘探技术 应用研究 发展
中图分类号:P631 文献标识码:A 文章编号:1674-098X(2014)08(b)-0041-01
地球物理勘探是通过物理场研究地质构造变化,从而探测地下异常体的一种技术方法。物探仪器是主要的测试设备,物探仪器运用物理学、电子学、系统科学、材料科学、计算机技术等学科的综合方法、技术和理论,来探测地球的各种物理信息。物探仪器应用也是非常广泛的,主要应用在建筑工程、水电、交通、煤炭、石油、地质等众多的领域,在资源与能源的发掘和探测、监测地球的环境污染、预测地质灾害等方面也发挥了重要的作用。
1 地球物理探测技术的主要方法
传统的地球物理探测技术的主要方法有:
(1)电法勘探:较为普遍运用的方法。是通过对地层电磁场、电学性质变化规律的研究,根据不同的电性差异,研究测量电场分布规律,以了解地质的状况。(2)磁法勘探:利用磁力仪监测不同地质体的磁性差异,研究地下磁异常及分布规律,从而解决各类地质问题。(3)重力勘探:依据各地质体存在一定密度差异,运用重力测量仪器观测出重力异常,了解地下地层的岩性和起伏变化情况。(4)地震勘探:地震勘探是发展最快的方法之一,它利用人工激发地震波,根据不同地层、岩石的地震波传播规律勘探地质的性质,达到预测地震、减少灾害及勘探和透析地球内部构造的目的。
随着科技技术的不断发展,地球物理探测仪器设备引进了现代电子技术,从而进一步压制干扰,提高分辨能力。
从探测深度上分别,物探主要分为四种类型:超浅层、浅层、中深层、深层[1],其分别应用的探测方法为:(1)对于超浅层,主要用于地质雷达技术与浅层地震技术两个探测方法;(2)在浅层上,有高密度电阻率和高频电磁成像两种方法;(3)对于中深层,主要应用可控源电磁测深和高精度重力测量两种方法;(4)对于深层,主要应用天然大地电磁测探、高精度磁力测量、深层地震,三种探测方法。
2 地球物理勘探中应用的新算法、新理论
(1)小波理论:是根据傅立叶理论分析逐渐发展起来的一个新的理论分支,适用于信号中差分方程数值解、数据压缩、子波算法、成像的处理,以提高数据的分辨率和信噪比。(2)神经网络理论:仿人脑思维的模拟计算。是通过样本资料的分析研究、学习,从而获得重要的参考数据,对未经处理的资料进行判断的理论。(3)几何分形:主要是对自然界中不规则、不稳定和较常见现象的进行研究,揭示自然界中不同尺度的物体和现象之间存在的相似性,以及整体和局部的相似性。由此,可以通过局部信息对整体信息进行预测[2]。(4)混沌理论:主要应用于描述非线性系统,它与几何分形理论联系很密切,他们都是分层次的基干尺度,揭示不同尺度之间存在的相似性、标度律、差异性等。(5)地理信息系统:一种计算机系统,利用计算机硬件和软件的支持,对时空的数据进行采集、存储、管理、查询、输出,通过地球物理勘探数据处理技术方法,能够快速地分析、输出和查询数据。
3 地球物理勘探技术的基本应用
(1)能源物理勘探。主要是对石油、天然气地区进行综合能源勘探。前期普查依赖于地震勘探。详查过程中,要运用大地电磁、高精度磁力、高精度重力等一些测探技术,对油气地区进行区块评价和构造研究,找出油气储藏构造,从而解决油气勘探中的疑难问题。(2)固体矿产物理勘探。尤其是金属矿产勘探,主要使用电法和磁法。电法主要是根据矿体与围岩的电性差异为基础,研究人工稳定的电流场在地下传导的分布规律。磁法勘探主要是根据矿体或其赋存构造与围岩的磁性差异,在地表或一定高空中测量磁场强度变化的规律。(3)工程物理勘探。工程建设迅速发展,工程物理勘探需求也日益增长,主要应用在建筑、公路、铁路、管道、水利等工程的检测,运用浅层地震、探地雷达、电法等探测方法对工程进行物理勘探。(4)对环境保护、灾害防治的物理勘探。地球物理勘探可以从电、热、光等物理变化进行监测,从而认识环境变化的过程,为环境保护提供背景资料。自然灾害的突然发生严重危害人们的生命安全和经济损失,地球物理监测技术的应用对自然灾害起到了有效的预测、防治的作用。
4 地球物理勘探技术发展的趋势
综合物理、数学、计算机等科学的应用,探测技术越来越成熟,地球物理勘探技术发展的趋势主要表现可以分为以下几个方面。
(1)应用计算机和数据采集技术,使得物理勘探技术向着自动化、数字化、轻便化和多功能化发展。目前在核电站、水电站、矿山等一些重大工程建设上,需要查明较大的危害,关键性的地质构造等[3]。同时,世界很多发达国家面临着浅层矿资源枯竭的问题,工作人员已经向沼泽、海洋、沙漠的方向进行资源勘探。对于这些工作开展就需应用新技术、新仪器,使难以到达的地区得以勘探实施。(2)总线技术进一步发展,逐步形成积木式、模块化、插卡式的球物理勘探仪器关键技术,这些技术的运用可以实现多功能和多参数的自动测量,使物理探测仪器系统模块式的组成结构更加紧凑,也代表新一代技术的发展方向。(3)应用功能较强的应用型软件和集成化的计算机辅助测试技术,使测试技术和测量仪器的发展更上一层。使物探仪器具有更强的功能性,可以更方便地满足勘探的各种需要。(4)高速单版数字信息处理器将误差修复、信号处理、数据处理的功能增强,对一些高档仪器更新、扩展的功能不再只单依靠增强硬件的功能和制造工艺的精细。(5)超导新技术于磁力仪、重力仪的运用,大大增强了探测仪器的功能。(6)应用RS、GPS与GIS技术,提高了地震勘探的分辨率和解释精度。
5 结语
与现代电子计算机技术、3S技术的结合,提高了解决各种地质问题及数据处理的工作效率,同时探测的精度也越来越高。由于新理论、新技术、新材料的运用,使得地球物理勘探技术应用领域和勘探范围得以拓展。总之,结合了新技术、新方法、新材料的地球物理勘探技术必将向多功能、智能化、数字化的方向发展,以期解决人类社会活动中更多的领域中的问题。
参考文献
[1] 徐观来.地球物理勘探技术发展现状与实际应用研究[J].科技创新与应用,2014(8).
[2] 张晗.地球物理勘探技术的发展及应用研究[J].科技传播,2013(15).
[3] 贾豫葛.地质工程专业地球物理勘探技术课程教学实践与思考[J].职业技术,2011(10).endprint