应用Bernoulli型简单方程求(2+1)维KP方程的精确行波解

2014-10-23 12:20和玲超庞晶
关键词:指数函数方程计算机

和玲超+庞晶

摘要利用行波变换把(2+1)维KP方程化成常微分方程,再运用简单方程法求解(2+1)维KP方程的行波解. 文中选取 Bernoulli方程为简单方程.将由KP方程所化成的常微分方程分成两部分:一部分包含导数项,另一部分为方程其他部分. 然后, 平衡最高次幂的非线性项所产生的最高次数和最高阶导数项所产生的最高项的次数,得到平衡方程,确定解的形式. 最后解得(2+1)维KP方程的行波解.

关键词 简单方程法;(2+1)维KP方程;精确行波解

中图分类号O175.29文献标识码A文章编号10002537(2014)04008205

在过去的30年里, 非线性偏微分方程数学模型广泛应用于自然现象和社会现象中. 比如流体力学和湍流理论, 神经学,混沌理论和生态学,孤子理论,生物学,动力系统理论等. 模型中的偏微分方程的精确解在以下几方面有着重要的用途. 首先这些解描述了不同类型的波. 在研究海底暗流,石油钻探和海洋开发等方面有广泛的应用. 其次,在所研究的系统中,特解可以作为程序模拟过程中计算机的初始条件,为计算机软件的开发提供理论支撑. 求解偏微分方程精确解中著名的方法有反散射变换和Hirota方法[1]. 在多年研究课题中,许多获得非线性偏微分方程精确解的方法已经得到了发展. 通过这些方法,许多方程的精确解已经获得. 比如KuramotoSivasinsky方程[2], sineGordon 方程[35],Kortewegde Vries方程[6],种群动态模型方程,PoissonBoltzmann方程[7]等.而获得非线性偏微分方程的精确解和近似解的一个直接的方法是简单方程方法[812]. 该方法或修正的简单方程方法已应用于许多非线性偏微分方程,如Fisher方程,反应类扩散和反应的电报方程[13],广义KuramotoSivasinsky方程[14],广义SwiftHohenberg方程和广义Rayleigh方程[15].在本文中,作者将运用简单方程方法得到(2+1)维KadomtsevPetviashvili方程的精确行波解.

1方法的引入

1.1用简单方程法研究非线性偏微分方程.

1.2平衡方程法

2应用Bernoulli型简单方程求(2+1)维KP方程的精确行波解

3结束语

近年来, 简单方程法首先由Kudryashov等人提出, 并应用于一些偏微分方程的求解, 得到许多孤子解. 本文主要研究(2+1)维KP方程, 目的是求得它的精确行波解. 简单方程法是一种有效的求偏微分方程精确解的方法, 本文选取了比较熟悉的Bernoulli方程为简单方程, 求得KP方程的新解, 由于方程中的系数α,γ,ε是自由参数, 所以求得的解是一系列方程的解,对于研究水波运动有重要意义. 该方法的核心是平衡方程思想的运用. 本文用k=2去平衡, 而进一步的研究可以选k=3,k=4,…的情形, 求得KP方程更多的解. 本文所得到的解是新解与文献[16~17]中的解不同,所解的KP方程自由参数更多,得到更一般的解. 更重要的是运用本文的思想可以研究更多的非线性偏微分方程, 求得它们的精确解, 为工程计算,人口学,计算科学等学科的非线性偏微分方程模型研究工作提供求得此类精确解的理论依据.

参考文献:

[1]〖ZK(#〗HIROTA R. Exact solution of Kortewegde Vries equation for multiple collisions of solitons[J]. Phys Rev Lett, 1971,27(18):11921194.

[2]KUDRYASHOV N A. Exact solutions of the generalized KuramotoSivashinsky equation[J]. Phys Lett A, 1990,147(56):287291.

[3]LOU S. Symmetry analysis and exact solutions of the 2+1dimensional sineGordon system[J]. J Math Phys, 2000,41(9):65096524.

[4]MARTINOV N, VITANOV N. On some solutions of the twodimensional sineGordon equation[J]. J Phys A: Math Gen, 1992,25(5):L41926.

[5]VITANOV N K, MARTINOV N K. On the solitary waves in the sineGordon model of the twodimensional Josephson junction[J]. Z Phys B, 1996,100 (1):129135.

[6]PANG J, BIAN C Q, CHAO L. A new auxiliary equation method for finding travelling wave solutions to KdV equation[J]. Appl Math Mech, 2010,31(7):929936.

[7]MARTINOV N, VITANOV N. On the correspondence between the selfconsistent 2D PoissonBoltzmann structures and the sineGordon waves[J]. J Phys A: Math Gen, 1992,25(2): L516.

[8]VITANOV N K. Application of simplest equations of Bernoulli and Riccati kind for obtaining exact travelingwave solutions for a class of PDEs with polynomial nonlinearity[J]. Commun Nonliner Sci Numer Simul, 2010,15(8): 20502060.

[9]KHADIJO R A, CHAUDRY M K. Exact solutions and conservation laws of ZakharovKuznetsov modified equal width equation with power law nonlinearity[J]. Nonlinear Anal: Real World Appl, 2012,13(4):16921702.〖ZK)〗

[10]〖ZK(#〗KUDRYASHOV N A. Simplest equation method to look for exact solutions of nonlinear differential equations[J]. Chaos Solitons Fract, 2005,24(5):12171231.

[11]VITANOV N K. On modified method of simplest equation for obtaining exact and approximate solutions of nonlinear PDES: the role of the simplest equation [J]. Commun Nonlinear Sci Numer Simul, 2011,16(11):42154231.

[12]KUDRYASHOV N A, LOGUINOVA N B. Extended simplest equation method for nonlinear differential equations[J]. Appl Math Comput, 2008,205(1):396402.

[13]VITANOV N K, DIMITROVA Z I. Application of the method of simplest equation for obtaining exact travelingwave solutions for two classes of model PDEs from ecology and population dynamics[J]. Commun Nonlinear Sci Numer Simul, 2010,15(10):28362845.

[14]VITANOV N K, DIMITROVA Z I, KANTZ H. Modified method of simplest equation and its application to nonlinear PDEs[J]. Appl Math Comput, 2010,216(9):25872595.

[15]刘玉堂, 李富志. 指数函数方法及其在非线性发展方程中的应用[J]. 计算机工程与应用, 2009,45(2):6870.

[8]VITANOV N K. Application of simplest equations of Bernoulli and Riccati kind for obtaining exact travelingwave solutions for a class of PDEs with polynomial nonlinearity[J]. Commun Nonliner Sci Numer Simul, 2010,15(8): 20502060.

[9]KHADIJO R A, CHAUDRY M K. Exact solutions and conservation laws of ZakharovKuznetsov modified equal width equation with power law nonlinearity[J]. Nonlinear Anal: Real World Appl, 2012,13(4):16921702.〖ZK)〗

[10]〖ZK(#〗KUDRYASHOV N A. Simplest equation method to look for exact solutions of nonlinear differential equations[J]. Chaos Solitons Fract, 2005,24(5):12171231.

[11]VITANOV N K. On modified method of simplest equation for obtaining exact and approximate solutions of nonlinear PDES: the role of the simplest equation [J]. Commun Nonlinear Sci Numer Simul, 2011,16(11):42154231.

[12]KUDRYASHOV N A, LOGUINOVA N B. Extended simplest equation method for nonlinear differential equations[J]. Appl Math Comput, 2008,205(1):396402.

[13]VITANOV N K, DIMITROVA Z I. Application of the method of simplest equation for obtaining exact travelingwave solutions for two classes of model PDEs from ecology and population dynamics[J]. Commun Nonlinear Sci Numer Simul, 2010,15(10):28362845.

[14]VITANOV N K, DIMITROVA Z I, KANTZ H. Modified method of simplest equation and its application to nonlinear PDEs[J]. Appl Math Comput, 2010,216(9):25872595.

[15]刘玉堂, 李富志. 指数函数方法及其在非线性发展方程中的应用[J]. 计算机工程与应用, 2009,45(2):6870.

[8]VITANOV N K. Application of simplest equations of Bernoulli and Riccati kind for obtaining exact travelingwave solutions for a class of PDEs with polynomial nonlinearity[J]. Commun Nonliner Sci Numer Simul, 2010,15(8): 20502060.

[9]KHADIJO R A, CHAUDRY M K. Exact solutions and conservation laws of ZakharovKuznetsov modified equal width equation with power law nonlinearity[J]. Nonlinear Anal: Real World Appl, 2012,13(4):16921702.〖ZK)〗

[10]〖ZK(#〗KUDRYASHOV N A. Simplest equation method to look for exact solutions of nonlinear differential equations[J]. Chaos Solitons Fract, 2005,24(5):12171231.

[11]VITANOV N K. On modified method of simplest equation for obtaining exact and approximate solutions of nonlinear PDES: the role of the simplest equation [J]. Commun Nonlinear Sci Numer Simul, 2011,16(11):42154231.

[12]KUDRYASHOV N A, LOGUINOVA N B. Extended simplest equation method for nonlinear differential equations[J]. Appl Math Comput, 2008,205(1):396402.

[13]VITANOV N K, DIMITROVA Z I. Application of the method of simplest equation for obtaining exact travelingwave solutions for two classes of model PDEs from ecology and population dynamics[J]. Commun Nonlinear Sci Numer Simul, 2010,15(10):28362845.

[14]VITANOV N K, DIMITROVA Z I, KANTZ H. Modified method of simplest equation and its application to nonlinear PDEs[J]. Appl Math Comput, 2010,216(9):25872595.

[15]刘玉堂, 李富志. 指数函数方法及其在非线性发展方程中的应用[J]. 计算机工程与应用, 2009,45(2):6870.

猜你喜欢
指数函数方程计算机
中国计算机报202007、08合刊
中国计算机报2019年48、49期合刊
关于几类二次不定方程的求解方法
中国古代的“计算机”
圆锥曲线方程的求法
根据勾股定理构造方程
指数函数、对数函数考点面面观
指数函数的图象与性质
一体式,趋便携雅兰仕AL-225
多变的我