RNAi体外沉默淋巴管内皮祖细胞VEGFR—3基因表达

2014-10-21 08:22陈永春金海峰谢立平王丽芳张梅李珅高喜仁李静平
中国医药科学 2014年18期
关键词:内皮阴性新生

陈永春??金海峰??谢立平??王丽芳??张梅??李珅??高喜仁??李静平

[摘要] 目的 应用聚乙烯亚胺(polyethyleneimine,PEI)包裹淋巴管内皮祖细胞(lymphatic endothelial progenitor cells,LEPCs)血管内皮生长因子受体3(vascular endothelial growth factor receptor-3,VEGFR-3)基因siRNA,体外沉默VEGFR-3基因表达,研究抑制LEPCs分化抗肿瘤淋巴管新生的作用。 方法 Ficoll法分离人脐血单个核细胞,流式细胞仪、免疫荧光分选并鉴定LEPCs。PEI包裹VEGFR-3siRNA并转染入LEPCs,流式细胞仪检测转染效率。RT-PCR和Western blot检测mRNA和蛋白质水平VEGFR-3基因沉默效果。 结果 VEGFR-3siRNA成功转入LEPCs,转染效率30%。VEGFR-3siRNA转染组LEPCs VEGFR-3mRNA和蛋白表达均降低(P<0.05)。 结论 体外经由PEI介导的siRNA能有效的抑制LEPCs VEGFR-3的表达,为以LEPCs为靶点抑制肿瘤淋巴管新生提供了实验依据。

[关键词] 淋巴管内皮祖细胞;VEGFR-3;聚乙烯亚胺;siRNA;淋巴管新生

[中图分类号] R737.14 [文献标识码] A [文章编号] 2095-0616(2014)18-11-04

肿瘤淋巴管的新生与肿瘤转移有密切的联系,能否有效抑制肿瘤淋巴管新生成为肿瘤治疗的研究热点。2005年,Wang等[1]继Salven[2]之后提出了CD34+/CD133+/VEGFR-3+细胞为LEPCs。在趋化因子的作用下,LEPCs动员、迁移至病变组织,血管内皮生长因子-C(vascular endothelial growth factor,VEGF-C)通过VEGF-C/VEGFR-3信号途径诱导其向淋巴管内皮细胞分化,进而促使新的淋

巴管生成[3-4]。Religa等[5]对淋巴管炎症角膜小鼠进行辐射处理后输入骨髓源性的细胞,发现VEGFR-3+细胞出现在新生淋巴管中;Bogos等[6]检测到小细胞肺癌患者血中CD34与VEGFR-3双阳性细胞明显增多,且与癌细胞淋巴结转移呈正相关。上述结果提示,VEGFR-3在LEPCs参与的肿瘤淋巴管的新生中起重要作用[7],如果我们靶向阻断VEGFR-3来抑制VEGF-C/VEGFR-3信号途径参与的肿瘤淋巴管新生,可达到抗肿瘤淋巴转移的目的。

RNAi是将与靶基因的mRNA同源互补的dsRNA导入细胞,特异性地降解靶基因的mRNA,从而产生相应的功能表型缺失的技术。本实验应用RNAi技术,拟将与VEGFR-3同源的siRNA转染入LEPCs,抑制其分化为淋巴管内皮细胞,从而达到抗淋巴管新生的目的,为抗肿瘤淋巴管新生提供实验依据和方法。

1 材料与方法

1.1 主要试剂与仪器

DMEM(Gibco),兔抗人VEGFR-3(Santa cruz),小鼠抗人CD133、CD34(Diagnostica),胎牛血清(四季青,杭州天杭生物科技有限公司),羊抗兔IgG FITC(Chemicon),羊抗小鼠IgG PE(Chemicon),羊抗兔IgG TRITC(Jackson),Trizol(Invitrogen),cDNA反转录试剂盒(Fermentas),Ladder DNA、蛋白质marker(Bio-rad),蛋白提取试剂盒(pierce),PEI(25kDa,Sigma Aldrich)。

流式细胞仪(FACS Calibur,FACSAria,BD);PCR仪(9600型,PE);转膜仪和蛋白电泳仪(Bio-rad);恒温培养箱(Heraeu);Olympus荧光显微镜、相差倒置显微镜(Nikon)。

1.2 单个核细胞的分离

取50~60mL足月正常分娩胎儿脐血,加入103 IU肝素。按Ficoll液密度梯度离心法[8]分离单个核细胞。将静置后的上部血液等量稀释后加于Ficoll液面上,Ficoll液与稀释血液的比例约为1∶2,离心(360g,25min)。将含有单个核细胞的液段移至另一离心管,PBS混悬后离心(250g,12min),收集细胞。

1.3 LEPCs的分选

用PBS(含1%BSA)清洗细胞,PBS混悬细胞,调整细胞密度1×107个/mL,加兔抗人VEGFR-3(1∶100),4℃孵育55min。用PBS洗3次,加1∶100 TRITC标记的羊抗兔IgG,4℃孵育30min。PBS清洗后,用DMEM(含2.5%FBS)重悬细胞[9],FACS Aria流式细胞仪分选VEGFR-3阳性细胞。将分选出的细胞培养后进行免疫荧光鉴定CD34和CD133的表达[4]。

1.4 VEGFR-3 siRNA抑制率的检测

1.4.1 VEGFR-3 siRNA的设计(表1)与合成(上海生工)

1.4.2 体外转染 (1)siRNA/PEI溶液的制备:将制得的PEI载体溶液(1mg/mL)滴加入siRNA溶液(1μg)中(N/P=8),振荡,室温孵育30min。(2)每

孔4×104个细胞接种于24孔板至细胞汇合度40%~60%,PBS清洗,加入无血清的DMEM。(3)将siRNA/PEI溶液分别加入细胞中轻轻混匀,转染6h后,更换完全培养基。荧光显微镜观察后消化细胞,流式细胞仪分析转染效率。

1.4.3 半定量RT-PCR 实验分五组:空白转染组、对照转染组、siRNA a组、siRNA b组、siRNA c组。体外转染同上,各组细胞数1×107,更换完全培养液培养至48h[10]。将Trizol 1mL加入培养皿中,吹打数次,将细胞裂解液转至1.5mL EP管中,室温静置5min;加入氯仿0.2mL,振荡15s,室温放置10min,12 000rpm,4℃离心10min;将上层液体移至另一个1.5mL EP管中,加异丙醇0.5mL,冰上放置10min,12 000rpm,4℃离心10min;弃上清加75%乙醇1mL涡旋振荡,8000rpm,4℃离心5min。弃去上清,干燥沉淀,加入40μL DEPC水溶解RNA。RT的反应条件:30℃10min,45℃ 30min,99℃ 5min,4℃ 5min;PCR反应条件:94℃ 2min,然后94℃ 30s,54℃ 45s,72℃ 1min,30个循环。VEGFR-3引物序列(f)5'TTTGTGGAGGGAAAGAATAAGA3'(r)5'GGACAGGTTGAGGGGCTA3'由上海生工合成,扩增产物进行1.5%琼脂糖凝胶电泳。每组分别取3个样本,实验重复3次。endprint

1.4.4 Western blot 转染步骤同上,转染后培养72h,弃培养基,用0.01M PBS浸洗2次。加入RIPA蛋白提取试剂,冰上裂解25min;用刮勺将细胞刮取至1.5mL EP管中(冰上操作),12 000rpm,4℃离心12min,上清液转移至EP管中,BCA法测蛋白含量。各组上样量相同,SDS-PAGE电泳分离蛋白,将凝胶上的蛋白用湿式电转移到PVDF膜上,用含3%BSA封闭液封闭,然后1mL兔抗人VEGFR-3抗体稀释液(1∶200)处理,以同样的方式加入HRP标记的羊抗兔IgG孵育2h。用ECL法显影。

1.5 统计学分析

数据均经SPSS13.0软件进行处理,用()表示;多组间的比较采用单因素方差分析,P<0.05为差异有统计学意义。

2 结果

2.1 体外转染结果

N/P=8时,流式细胞仪检测siRNA/PEI转染组转染效率为30%。

2.2 各组VEGFR-3 siRNA抑制VEGFR-3表达的分析

2.2.1 半定量RT-PCR结果分析 各组VEGFR-3mRNA表达结果显示,空白与阴性转染组之间无差异,siRNA a组、siRNA b组、siRNA c组与空白转染组和阴性转染组比较均有显著差异,其中siRNA a组抑制效率最高(图1)。

Marker 空白 阴性 a b c

GAPDH(590bp)

VEGFR-3(261bp)

A

B

A:VEGFR-3siRNA/PEI转染LEPCs48h各组VEGFR-3mRNA的表达。B:统计学结果siRNA a组、siRNA b组、siRNA c组与空白转染组和阴性转染组比较有统计学意义,#P<0.05,*P<0.01,siRNAa组与siRNAb组、siRNAc组比有统计学意义P<0.05

图1 半定量RTPCR结果分析

2.2.2 Western blot检测结果分析 转染各组细胞VEGFR-3蛋白表达结果显示,空白与阴性转染组之间无差异siRNA a组、siRNA b组、siRNA c组与空白转染组和阴性转染组比较均有显著差异,其中siRNA a组抑制效率最高(图2)。此结果在蛋白水平上符合半定量RT-PCR的实验结果。

空白 阴性 a b c

VEGFR-3165KD

β-actin 43KD

C

D

C:VEGFR-3siRNA/PEI转染LEPCs72h各组VEGFR-3蛋白的表达。D:统计学结果siRNA a组、siRNA b组、siRNA c组与空白转染组和阴性转染组比较有统计学意义,#P<0.05,*P<0.01,siRNAa组与siRNAb组、siRNAc组比有统计学意义,P<0.05

图2 Westem blot 检测结果

3 讨论

在肿瘤转移过程中,肿瘤细胞可经新生的淋巴管转移[11],抑制肿瘤淋巴管新生对肿瘤治疗至关重要。LEPCs参与肿瘤淋巴管新生已成为研究热点[12]。LEPCs可迁移和定居到肿瘤,参与肿瘤淋巴管新生[3,13-14]。关于LEPCs参与淋巴管新生的机制尚未完全明确。本实验在体外将VEGFR-3siRNA转染入LEPCs。裸siRNA分子易降解且靶向性差,目前多采用借助载体给药,阳离子聚合物具有较低的免疫原性和细胞毒性多被应用于研究[15]。PEI是一种被广泛用于DNA和siRNA等的阳离子聚合物载体,通过形成纳米粒包裹siRNA后给药[16]。

本研究采用分子量为25KDa的PEI为载体介导VEGFR-3siRNA的转染,成功转染VEGFR-3siRNA进入LEPCs内,用RT-PCR和Western blot检测mRNA和蛋白质表达,证实了VEGFR-3siRNA对靶基因VEGFR-3的沉默效果。说明通过利用RNAi技术能够在体外靶向抑制LEPCs VEGFR-3的表达,进而干扰VEGF-C/VEGFR-3信号途径,抑制其分化和淋巴管新生。如果以体外实验结果作为基础,将VEGFR-3siRNA导入LEPCs并靶向于肿瘤,可能会抑制淋巴管新生引起的肿瘤转移。

[参考文献]

[1] Wang H,Tan Y,Zhang M,et al.Vascular endothelial growth factor-C induced differentiation of CD34+ CD133+ VEGFR-3 EPCs towards lymphatic endothelial cells[J].Jpn J Lymphol,2005,28(2):71-73.

[2] Salven P,Mustjoki S,Alitalo R,et al.VEGFR-3 and CD133 identify a population of CD 34+ lymphatic/vascular endothelial precursor cells[J].Blood,2003,101(1):168-172.

[3] Norrmén C,Tammela T,Petrova TV. et al. Biological basis of therapeutic lymphangiogenesis. Circulation[J].2011,123:1335-1351.

[4] Tan YZ,Wang HJ,Zhang MH,et al.CD34+ VEGFR-3+ progenitor cells have a potential to differentiate towards lymphaticendothelial cells[J]. Cell Mol Med,2014,18(3):422-433.endprint

[5] Religa P,Cao R,Bjorndahl M,et al. Presence of bone marrow derived circulating progenitor endothelial cells in the newly formed lymphatic vessels[J].Blood,2005,106(13): 4184-4190.

[6] Bogos K,Renyi-Vamos F,Dobos J,et al.High VEGFR-3-positive circulating lymphatic/vascular endothelial progenitor cell level is associated with poor prognosis in human small cell lung cancer[J].Clin Cancer Res,2009,15(5):1741-1746.

[7] 王海杰,谭玉珍.淋巴管内皮祖细胞在淋巴管新生中的作用及其机制[J].解剖科学进展,2011,17(6):593-596.

[8] González-González M,Rito-Palomares M,Méndez Quintero O. Partition behavior of CD133(+) stem cells from human umbilical cord blood in aqueous two-phase systems: In route to establish novel stem cell primary recovery strategies[J].Biotechnol Prog,2014,30(3):700-707.

[9] Wu JH,Wang HJ,Tan YZ. et al.Characterization of rat very small embryonic-like stem cells and cardiac repair after cell transplantation for myocardial infarction[J].Stem Cells Dev,2012,21(8):1367-1379.

[10] Zhang DY,Wang HJ,Tan YZ.Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway[J].PLoS One,2011,6(6):e21397.

[11] Moore XL,LU J,Sun L,et al.Endothelial progenitor cells “homing”specificity to brain tumors[J].Gene Theraphy,2004,11(10):811-818.

[12] 王海杰,谭玉珍.淋巴管新生及其在疾病发生和治疗中的意义[J].解剖学报,2007,38(2): 250-252.

[13] Hiasa K,Ishibashi M,Ohtani K,et al.Gene transfer of stromal cell-derived factor-1:enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway[J].Circulation,2004,109(20):2454-2461.

[14] Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology[J].CireRes,2002:92(10):877-887.

[15] Pecot CV,Calin GA,Coleman RL,et al.RNA interference in the clinic: challenges and future directions[J].Nat Rev Cancer,2011,11(1):59-67.

[16] Goldsmith M,Mizrahy S,Peer D.Grand challenges in modulating the immune response with RNAi nanomedicines[J].Nanomedicine,2011,6(10):1771-1785.

(收稿日期:2014-06-18)endprint

[5] Religa P,Cao R,Bjorndahl M,et al. Presence of bone marrow derived circulating progenitor endothelial cells in the newly formed lymphatic vessels[J].Blood,2005,106(13): 4184-4190.

[6] Bogos K,Renyi-Vamos F,Dobos J,et al.High VEGFR-3-positive circulating lymphatic/vascular endothelial progenitor cell level is associated with poor prognosis in human small cell lung cancer[J].Clin Cancer Res,2009,15(5):1741-1746.

[7] 王海杰,谭玉珍.淋巴管内皮祖细胞在淋巴管新生中的作用及其机制[J].解剖科学进展,2011,17(6):593-596.

[8] González-González M,Rito-Palomares M,Méndez Quintero O. Partition behavior of CD133(+) stem cells from human umbilical cord blood in aqueous two-phase systems: In route to establish novel stem cell primary recovery strategies[J].Biotechnol Prog,2014,30(3):700-707.

[9] Wu JH,Wang HJ,Tan YZ. et al.Characterization of rat very small embryonic-like stem cells and cardiac repair after cell transplantation for myocardial infarction[J].Stem Cells Dev,2012,21(8):1367-1379.

[10] Zhang DY,Wang HJ,Tan YZ.Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway[J].PLoS One,2011,6(6):e21397.

[11] Moore XL,LU J,Sun L,et al.Endothelial progenitor cells “homing”specificity to brain tumors[J].Gene Theraphy,2004,11(10):811-818.

[12] 王海杰,谭玉珍.淋巴管新生及其在疾病发生和治疗中的意义[J].解剖学报,2007,38(2): 250-252.

[13] Hiasa K,Ishibashi M,Ohtani K,et al.Gene transfer of stromal cell-derived factor-1:enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway[J].Circulation,2004,109(20):2454-2461.

[14] Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology[J].CireRes,2002:92(10):877-887.

[15] Pecot CV,Calin GA,Coleman RL,et al.RNA interference in the clinic: challenges and future directions[J].Nat Rev Cancer,2011,11(1):59-67.

[16] Goldsmith M,Mizrahy S,Peer D.Grand challenges in modulating the immune response with RNAi nanomedicines[J].Nanomedicine,2011,6(10):1771-1785.

(收稿日期:2014-06-18)endprint

[5] Religa P,Cao R,Bjorndahl M,et al. Presence of bone marrow derived circulating progenitor endothelial cells in the newly formed lymphatic vessels[J].Blood,2005,106(13): 4184-4190.

[6] Bogos K,Renyi-Vamos F,Dobos J,et al.High VEGFR-3-positive circulating lymphatic/vascular endothelial progenitor cell level is associated with poor prognosis in human small cell lung cancer[J].Clin Cancer Res,2009,15(5):1741-1746.

[7] 王海杰,谭玉珍.淋巴管内皮祖细胞在淋巴管新生中的作用及其机制[J].解剖科学进展,2011,17(6):593-596.

[8] González-González M,Rito-Palomares M,Méndez Quintero O. Partition behavior of CD133(+) stem cells from human umbilical cord blood in aqueous two-phase systems: In route to establish novel stem cell primary recovery strategies[J].Biotechnol Prog,2014,30(3):700-707.

[9] Wu JH,Wang HJ,Tan YZ. et al.Characterization of rat very small embryonic-like stem cells and cardiac repair after cell transplantation for myocardial infarction[J].Stem Cells Dev,2012,21(8):1367-1379.

[10] Zhang DY,Wang HJ,Tan YZ.Wnt/β-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway[J].PLoS One,2011,6(6):e21397.

[11] Moore XL,LU J,Sun L,et al.Endothelial progenitor cells “homing”specificity to brain tumors[J].Gene Theraphy,2004,11(10):811-818.

[12] 王海杰,谭玉珍.淋巴管新生及其在疾病发生和治疗中的意义[J].解剖学报,2007,38(2): 250-252.

[13] Hiasa K,Ishibashi M,Ohtani K,et al.Gene transfer of stromal cell-derived factor-1:enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway[J].Circulation,2004,109(20):2454-2461.

[14] Ingber DE. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology[J].CireRes,2002:92(10):877-887.

[15] Pecot CV,Calin GA,Coleman RL,et al.RNA interference in the clinic: challenges and future directions[J].Nat Rev Cancer,2011,11(1):59-67.

[16] Goldsmith M,Mizrahy S,Peer D.Grand challenges in modulating the immune response with RNAi nanomedicines[J].Nanomedicine,2011,6(10):1771-1785.

(收稿日期:2014-06-18)endprint

猜你喜欢
内皮阴性新生
玉簪属种质资源收集筛选及耐阴性研究
重获新生 庇佑
基于“内皮损伤学说”探讨动脉粥样硬化的中医药防治策略
新生月赛优秀作品
枯蓬新生
勒布朗的遗产
新生
丹参酚酸B对外周血内皮祖细胞增殖、粘附和迁移功能的影响