李天祥 朱晶
摘要 2004-2013年中国粮食实现连续十年增产。粮食内部种植结构调整、高产作物对低产作物的种植替代,成为促进粮食持续增产不可忽视的重要因素。然而,由于不同粮食作物单位产量的耗水和耗地程度不同,在推动粮食总产增长的同时,这种结构调整也会影响我国粮食生产的水土资源消耗。本文系统测算了粮食“十连增”对我国水土资源利用的影响,并重点讨论了粮食内部种植结构调整在其中所发挥的作用。结果表明,过去十年来,结构调整共为我国粮食生产节省了10 150万亩的播种面积和310.6亿m3的水资源消耗。分区域来看,结构调整在东北、华北、华中、西南和西北地区发挥了较好的“节地又节水”作用,但在东南地区则体现为“节地但耗水”。粮食生产重心北移,北方高产但单位质量耗水量相对较低的玉米等粮食作物播种面积和比例的持续扩大,除推动全国粮食总产量增加以外,也一定程度缓解了北方地区水资源消耗的负担。但尽管如此,粮食“十连增”总体上仍进一步加剧了全国水土资源短缺的严峻形势。未来水土资源的刚性约束,使得我国粮食增产的压力持续扩大,且面临巨大的生态环境成本;而粮食生产结构调整的深入则会加剧不同粮食作物间供求不平衡的矛盾,同时也面临着国际市场贸易环境变化及国内外粮价相互传导所带来的诸多不确定性,因此,今后依靠结构调整进一步促进粮食增产且发挥节地节水作用的空间将会十分有限。综合来看,为实现中国粮食总量安全与结构平衡,一方面应当立足国内生产,提高水土资源的利用效率,挖掘低产粮食作物的单产潜力;另一方面也应考虑适度利用国际粮食市场,调剂与平衡国内农产品供需,以更好地保障国家粮食安全。
关键词 粮食增产;结构调整;水土资源;资源消耗;粮食安全
中图分类号 F326.1;X24 文献标识码 A 文章编号 1002-2104(2014)09-0096-07
2004-2013年我国粮食实现“十连增”。粮食总产增长的同时,生产结构也发生了较大变化:高产的玉米、稻谷播种比重不断提高,相对低产的大豆、小麦及薯类等其它粮食作物种植比例持续下降,这种粮食内部种植结构调整为我国粮食持续增产发挥了重要的作用[1-2]。然而,由于不同粮食作物单位产量的耗水和耗地程度不同,在推动粮食总产增长的同时,粮食内部种植结构调整势必也会对我国粮食生产的水土资源消耗产生影响。那么,粮食“十连增”对我国水土资源利用的影响到底如何?结构调整究竟在其中发挥了怎样的作用?进一步地,考虑到我国不同地区水土资源禀赋不同、粮食内部种植结构调整情况各异,结构调整对不同地区粮食生产水土资源消耗的影响有何差别?是否与各地区的水土资源禀赋特征相适应?本文尝试构建一个分析框架,对上述问题进行讨论,以期能够为正确地认识我国粮食“十连增”,及判断今后的粮食增产前景和保障国家粮食安全的方式选择提供参考。
1 我国水土资源的空间分布与近十年来粮食产量及生产结构变化
1.1 我国水土资源的空间分布与近十年来粮食产量变化
水土资源是人类赖以生产与生活的基本资料。我国是一个水土资源相对短缺的国家,人均水土资源占有量分别仅相当于世界平均水平的28%和40%[3-4]。同时,全国水土资源的空间分布不均,水土资源匹配严重错位,北方耕地面积占全国耕地面积的3/5,而水资源量仅占全国的1/ 5;土地资源集中的华北和东北地区,广义农业水资源占有量仅为5 006 m3 /hm2和4 341 m3 /hm2,远低于全国平均值[5-6]。
尽管水土资源条件不容乐观,然而受“人努力、天帮忙”等一系列因素的影响,2004-2013年我国粮食仍然取得了“十连增”,10年共增产17 123万t,增长39.8%,年均增速高达3.4%。
根据我国农作物的区域种植特点,本文将全国31个省(市)区分成以下6大区域:东北地区,包括黑龙江、吉林、辽宁及内蒙古;东南地区,包括上海、江苏、浙江、福建、广东、海南;华北地区,包括北京、天津、河北、山西、山东、河南;华中地区,包括安徽、江西、湖北、湖南;西南地区,包括重庆、四川、贵州、云南、广西、西藏;西北地区,包括陕西、甘肃、青海、宁夏、新疆。
其中,东北地区粮食增产幅度最大,对全国粮食增产的贡献高达40.3%;华北、华中、西北地区的粮食增产贡献分别为27.2%、16.3%和7.7%;而东南和西南地区的增产贡献则均为4.3%。整体来看,全国粮食增产主要发生在地多水少的北方地区,且粮食生产呈现进一步向北方地区集中的趋势。
1.2 近十年来全国粮食种植结构调整及其地区差异
粮食总产增长的同时,我国粮食生产结构也发生了较为明显的变化,粮食内部种植结构调整主要体现为玉米、稻谷对小麦、大豆及薯类等其它粮食作物的种植替代。2003-2012年全国玉米、稻谷的播种面积分别扩大了16 443和5 444万亩,占粮食总播种面积的比重各自上升了7.3和0.4个百分点;小麦的播种面积虽有所提高,但增长速度低于粮食总播种面积的平均增速,导致其在粮食总播种面积中的占比略有下降;而大豆、薯类等其它粮食作物的播种面积则逐年降低,共减少7 601万亩,占粮食总播种面积的比例降低了7.5个百分点。
分区域来看,各地区粮食生产结构均发生了较大的改变,粮食内部种植结构调整在替代方式和替代程度上也存在较大的不同。其中,东北、华北地区粮食内部种植调整以稻谷、玉米对大豆和其它粮食作物的替代为主,小麦播种比例较为稳定。尤其在东北地区这种替代关系最为明显:2003-2012年,东北玉米和稻谷播种面积占粮食总播种面积的比重分别提高了13.5和5.4个百分点,各自比全国平均水平高出6.2和5.0个百分点;而大豆和其它粮食作物播种比例则累计减少11.0和8.2个百分点,显著高于全国的平均降幅。华中地区除了稻谷、玉米对大豆、薯类及其它粮食作物的替代以外,小麦的播种比重也有所提高。而西南和西北地区粮食内部种植结构调整则体现为玉米播种比例上升、所有其它粮食作物种植比重下降;东南地区稻谷和玉米播种比例相对较为稳定,结构调整以小麦对大豆及薯类等其它粮食作物的种植替代为主,但从调整幅度来看,该区作物调增和调减的比例并不太大。
总体而言,“十连增”期间我国粮食种植结构变化体现出了较为明显的高产作物替代低产作物的趋势,且不同地区粮食内部种植结构调整在调整方式和程度上存在较大的差别。这种粮食内部种植结构调整可以在不增加额外播种面积压力的情况下,通过改变粮食种植结构而提高粮食的加权平均单产,进而成为推动全国粮食增产的一个重要影响因素[1]。然而,粮食生产需要密集的消耗水土资源,而不同粮食作物单位质量的耗地和耗水程度不同。
各粮食作物单位质量耗地量以其单位面积产量的倒数来表示,我国主要粮食作物单位质量耗地量大小的排序依次是:大豆>其它(含薯类)>小麦>玉米>稻谷。我国主要粮食作物单位质量耗水量大小的排序依次是:大豆>稻谷>其它(含薯类)>小麦>玉米[7-8]。
大豆、薯类等调减作物单位质量的耗地与耗水量显著高于玉米等调增作物,那么,粮食“十连增”及粮食内部种植结构调整对我国水土资源消耗的影响到底如何?对各地区的水土资源消耗的影响有何差异?建立一个合适的分析框架,对上述问题进行深入讨论,无疑具有重要的现实意义。
2 结构调整对我国粮食生产水土资源消耗的影响测度:思路与方法
2.1 结构调整对粮食生产土地资源消耗的影响测度
由于不同粮食作物之间往往存在着“单产差”(单产的倒数之差即为“耗地差”),因而粮食内部种植结构调整可以在不增加额外播种面积压力的情况下,通过改变粮食种植结构,比如增加或者减少相对高产作物的播种比例来影响粮食的加权平均单产,进而影响粮食总产量,并相对地“节省”或者“增加”粮食生产过程中的土地资源消耗。测算结构调整对土地资源消耗的影响,可以用无结构调整情形下,即保持各粮食作物种植结构比例不变时,为获得相同的粮食总产量应当投入的粮食播种面积,与实际中已经发生结构调整情形下的粮食播种面积之间的差值来表示。如果两者之差大于0,则表明结构调整相对“节省”了土地资源;反之,则表明结构调整相对“增加”了粮食生产的土地资源消耗。具体而言,测算方法如下:
遵循上述思路,本文测算结构调整对我国整体及各地区粮食生产水资源消耗的影响,主要包含如下四个步骤:①以孙才志等[7-8]所估算的全国及分省(市)主要农产品单位质量虚拟水含量数据为基础,结合当年全国及各省(市)主要粮食作物单位面积产量数据,分别计算得到全国及分省(市)不同粮食作物的单位面积耗水量;②分别以有结构调整与无结构调整情形下各粮食作物的种植结构比例为权重,加总得到两种情形下各自的粮食单位面积加权平均耗水量;③结合两种情形下的粮食单位面积加权平均单产数据,计算得到粮食单位质量的加权平均耗水量;④以粮食单位质量加权平均耗水量乘以对应年份的粮食总产量,即可计算出当年粮食生产的总耗水量;比较有结构调整和无结构调整情况下的耗水量,便可得出结构调整对我国粮食生产水资源消耗的影响。
3 结构调整对我国粮食生产水土资源消耗的影响测度:结果与分析
依据以上测算思路及方法,本文分别从全国与区域两个层面,测算了粮食“十连增”及粮食内部种植结构调整对我国水土资源利用的影响。具体结果如下:
3.1 结构调整对我国粮食生产土地资源消耗的影响
3.1.1 对全国粮食生产土地资源消耗的影响
“十连增”期间粮食内部种植结构调整、高产作物对低产作物的种植替代,一定程度上提高了我国粮食单位面积的加权平均产量,使得与无结构调整情形相比,在获得相同产量时,结构调整发挥了较好地节约土地投入量的作用(见表1)。2003-2012年,粮食内部种植结构调整为我国相对节省了约10 150万亩的粮食播种面积,占同期全国粮食播种面积增加总量的57.4%。分年份来看,除个别年份以外,结构调整对近十年来我国各年度的粮食加权平均单产均有一定的提升作用,相对节省粮食播种面积的数量基本都在500万亩以上,节约部分占当年全国粮食播种面积实际增长量的比例均超过15%,其中2006和2012年,结构调整分别为我国节省粮食播种面积1 480和1 320万亩,各相当于当年粮食播种面积增长总量的145.2%和139.7%。结构调整在不增加额外播种面积压力的情况下,通过提高粮食加权平均单产,较好地发挥了“节地”功能。
3.1.2 对各地区粮食生产土地资源消耗的影响
由于全国各地区粮食内部种植结构调整在调整方式
和调整程度上存在较大的差别,导致结构调整对各地区粮食加权平均单产提升的贡献作用各异,为各区域相对节省的粮食播种面积数量也存在较大的不同(见表2)。具体而言,东北地区是全国结构调整“节地”作用最为显著的区域,2003-2012年因结构调整相对节省播种面积6 310万亩,占结构调整节约全国粮食播种面积总量的62.2%;华北和华中地区结构调整的“节地”作用也比较明显,分别节省粮食播种面积1 810和1 140万亩,占到当年结构调整节省全国粮食播种面积总量的17.8%和11.2%;而在西北、西南和东南地区,尽管结构调整也一定程度上起到了节省土地资源的作用,但节约数量相对较小,占全国整体的比重较为有限。
3.2 结构调整对全国及分地区粮食生产水资源消耗的影响
3.2.1 对全国粮食生产水资源消耗的影响
持同样的产量不变,如果不存在结构调整的话,则2012年粮食生产每t需要耗水1 234.1 m3,总耗水量将达到7 276.1亿m3,比有结构调整的情形高出310.6亿m3,占到“十连增”期间全国粮食生产耗水增加总量的约20.2%(见表3)。粮食内部种植结构调整在相对节省了粮食生产的土地资源消耗的同时,也较大幅度地节约了水资源消耗。
从结构调整对全国粮食生产水资源消耗影响的年际变化情况来看,除个别年份结构调整相对增加了水资源消耗以外,绝大部分年份中结构调整均有效地节约了粮食生产的水资源使用量(见表3),其中2006、2007和2009年结构调整分别为节约水资源96.1、29.3和17.7亿m3,分别占到当年粮食生产实际耗水增加量的97.6%、227.1%和54.8%;其他年份结构调整节省水资源消耗的作用也很明显,占当年粮食生产实际水资源消耗增加量的比重基本都在15%以上。
3.2.2 对各地区粮食生产水资源消耗的影响
尽管由于粮食产量的增长,各地区粮食生产的水资源消耗总量均有一定程度的增加,但除东南地区以外,在维持粮食总产量不变的条件下,粮食内部种植结构调整对我国其他五大地区粮食生产水资源消耗的增加均有一定程度的抵消作用(见表4)。其中东北地区结构调整的节水作用最为显著,2003-2012年为该区粮食生产节约用水219.7亿m3,占到结构调整对全国粮食生产耗水节约总量的70.7%;华北、西北、西南地区结构调整的节约用水数量也比较大,占结构调整全国节水总量的比例分别为13.3%、9.6%和5.5%;而华中地区结构调整的节水作用相对较小,仅为5.8亿m3,占结构调整全国节水总量的比重十分有限。东南地区是全国唯一的因结构调整而使得粮食生产水资源消耗进一步增加的区域,这可能与该区主要调增的品种是单位质量耗水量相对较高的水稻和小麦有关。“十连增”期间该区在粮食总播种面积减少的情况下,水稻和小麦的播种面积却扩大了704万亩。水稻和小麦的调增虽然有利于提升该区的粮食加权平均单产,从而推动粮食总产量的增长,但同时也一定程度上加剧了该区粮食生产水资源消耗的压力。
4 结论与讨论
4.1 主要结论
本文从全国和区域两个层面,系统测算了粮食“十连增”及粮食内部种植结构调整对我国粮食生产水土资源消耗的贡献,研究得出如下结论:
(1)从全国整体来看,“十连增”期间粮食内部种植结构调整、高产作物对低产作物的种植替代,在有利推动我国粮食增产,相对“节省”粮食生产的土地资源消耗的同时,也一定程度上起到了节约水资源消耗的作用。2003-2012年,结构调整为我国节省了约10 150万亩的播种面积和310.6亿m3的水资源消耗,分别占到了同期全国粮食播种面积和水资源消耗实际增长总量的57.4%和20.2%。
(2)分区域来看,除东南地区以外,粮食内部种植结构调整在全国其他地区都发挥了较好的“节地又节水”作用,而在东南地区则表现为“节地但耗水”。总体来看,结构调整的“节地”和“节水”作用在北方地区表现的最为明显,东北、华北、西北地区结构调整节约的水土资源数量均占到结构调整对全国粮食生产水土资源消耗节约总量的90%左右。
(3)考虑到我国水土资源空间分布严重不均、互不匹配的特点,南方水多地少、北方水少地多,粮食生产重心北移、北方地区粮食产量快速增长,尽管在推动该区土地利用效率提高的同时,进一步加剧了北方水资源短缺的矛盾[8-9];但从粮食内部种植结构调整的角度来看,单位面积产量相对较高而单位质量耗水量相对较低的玉米等粮食作物播种面积和比例的持续扩大,不仅有利于全国粮食总产量的增长,而且也一定程度发挥了节水作用,减缓了粮食增产所带来的水资源消耗负担。
4.2 进一步的讨论
未来来看,水土资源作为基础性自然资源和战略性经济资源,将成为制约我国粮食安全的刚性约束因素[10],粮食增产和结构调整的空间也将很大程度上受到水土资源条件的限制。尽管“十连增”期间依靠粮食内部种植结构调整,一定程度上起到了相对节约水土资源的作用,但整体而言,由于粮食总产量的持续增长,近十年来我国粮食生产水土资源消耗总量仍在不断上升,粮食“十连增”进一步加剧了全国水土资源短缺的严峻形势。同时,粮食增产的生态环境成本越来越高,部分粮食主产省区化肥、农药的大量使用已经造成了严重的农业面源污染,片面追求高产使得当地的环境和资源承载面临巨大的压力,今后维持我国粮食持续增产的难度将会越来越大。
此外,虽然粮食内部种植结构调整有力推动了全国粮食总产量的增长,但随着近年来结构调整的不断深入,我国不同粮食作物供需结构不平衡的矛盾日益凸显。高产的玉米替代低产的大豆,尽管有利于更好地满足国内快速上涨的饲料用粮需求,维持较高的谷物自给水平;但却进一步加大了油料作物,特别是大豆,国内供应自我保障的难度。同时,国际市场贸易环境的变化及国内外粮价相互传导,也为进一步粮食内部种植结构调整增添了不确定性[1]。综合来看,未来粮食内部种植结构调整将面临诸多限制,试图依靠结构调整进一步促进粮食增产且发挥节地节水作用的空间将会十分有限。
因此,今后为实现我国粮食总量安全与结构平衡,一方面应当立足国内生产,提高水土资源的利用效率,挖掘低产粮食作物的单产潜力,重视节水技术的开发及应用;另一方面也应考虑适度利用国际粮食市场,调剂与平衡国内农产品供需,以更好地保障国家粮食安全。
(编辑:刘呈庆)
参考文献(References)
[1]朱晶,李天祥,林大燕,等.“九连增”后的思考:粮食内部种植结构调整的贡献及未来潜力分析[J].农业经济问题,2013,(11):36-43. [Zhu Jing, Li Tianxiang, Lin Dayan, et al. Analysis on Chinas Nineyear Consecutive Grain Production Growth: Contribution and Future Potential of Intercrop Structural Adjustment [J]. Issues in Agricultural Economy, 2013, (11): 36-43. ]
[2]陈劲松.2012年中国农村经济形势分析与2013年展望[J].中国农村经济,2013,(2):4-11. [Chen Jinsong. An Analysis of Chinas Rural Economic Situation in 2012 and Outlook for 2013 [J].Chinese Rural Economy, 2013, (2): 4-11.]
[3]Cater C A, Zhong F, Zhu J. Advances in Chinese Agriculture and Its Global Implication [J]. Applied Economic Perspective and Policy, 2012, 34(1):1-36.
[4]FAO, OECD. Agricultural Outlook 2013-2022: Highlights[R].Roman: FAO, 2013.
[5]刘彦随,吴传钧.中国水土资源态势与可持续食物安全[J]. 自然资源学报,2002,17(3):270-275.[Liu Yansui, Wu Chuanjun. Situation of Landwater Resources and Analysis of Sustainable Food Security in China [J]. Journal of Natural Resources, 2002, 17(3):270-275. ]
[6]李祥妹,周龙春.基于要素成本核算的水资源管理研究[J].中国人口·资源与环境,2012,22(12):39-45. [Li Xiangmei, Zhou Longchun.Water Management Research Based on Factor Cost Accounting[J].China Population, Resources and Environment, 2012, 22(12): 39-45. ]
[7]孙才志,张蕾.中国农产品虚拟水-耕地资源区域时空差异演变[J].资源科学,2009,31(1):84-93.[Sun Caizhi, Zhang Lei. Changes in Spatial and Temporal Differences of Agricultural Product Virtual Water Versus Cultivated land in China [J].Resource Science, 2009, 31(1):84-93.]
[8]孙才志,刘玉玉,张蕾.中国农产品虚拟水与资源环境经济要素的时空匹配分析[J].资源科学,2010,32(3):512-519. [Sun Caizhi, Liu Yuyu, Zhang Lei. Analysis on the Spatialtemporal Matching of Crops Virtual Water Versus Resourcesenvironmenteconomy Factors in China [J].Resource Science, 2010, 32(3):512-519.]
[9]刘宝勤.我国粮食虚拟水流动空间格局及其调控政策[J].水利发展研究,2010,(2):16-20. [Liu Baoqin. Spatial Patterns of Chinas Virtual Water Flow for Food Crops and Its Policy Implications [J].Water Resources Development Research, 2010, (2): 16-20. ]
[10]王浩,杨贵羽,杨朝晖.水土资源约束下保障粮食安全的战略思考[J].中国科学院院刊,2013,28(3):329-336. [Wang Hao,Yang Guiyu, Yang Zhaohui. Thinking of Agricultural Development in China Based on Regional Water Resources and Land Cultivation [J]. Bulletin of Chinese Academy of Sciences, 2013, 28(3): 329-336. ]
Abstract China has achieved a tenyear consecutive grain production growth from the year 2004 to 2013. Structural adjustment among grain crops with high yielding crops replacing lowyielding ones is an important factor contributing to the output growth. Given the fact that different crops require different amounts of water and land in their production, the structural adjustment can have significant impacts on both crop yield and the usage of production resources such as water and land. This paper has estimated systematically the impacts of Chinas tenyear consecutive grain production growth on its water and land use, with emphasized analysis on the role of intercrop structural adjustment. The results show that the intercrop structural adjustment has helped to save appropriate 101.5 million mu sown area and 31.06 billion m3 water resource for the country, compared with the scenarios with no such adjustment. From the regional perspective, the impacts of structural adjustment in the North, Northeast, Northwest, Middle and Southwest China are ‘saving land and water, while that in the Southeast China is ‘saving land but using more water. As grain production has been concentrated to the northern part of the country, the continued sown area and ratio increase in highyielding but lowwater usage grain crops, such as maize in the region, has not only helped to increase the grain production, but also alleviated the water consumption burden causing by grain output growth in northern China. However, despite of these facts, Chinas tenyear consecutive grain production growth has generally intensified the shortage of its land and water resources. Given the constraint of the worsening land and water endowments, the pressure of further grain output growth will be expanding in the future, as well as facing with great ecological environment costs. Intercrop structural adjustment may exacerbate the imbalance between supply and demand of each crop, and will be more vulnerable to the world food market volatility from trade environment change and price transmission. In the future, the potential for further such adjustment with a view to increase grain output and save land and water will be limited. Therefore, to ensure food security in China, increasing domestic grain production by improving land and water usage efficiencies, tapping yield potential of lowyielding crops will be effective measures, along with appropriate utilization of world market to balance domestic food supply and demand.
Key words grain output growth; structural adjustment; water and land resources; resources consumption; food security
[4]FAO, OECD. Agricultural Outlook 2013-2022: Highlights[R].Roman: FAO, 2013.
[5]刘彦随,吴传钧.中国水土资源态势与可持续食物安全[J]. 自然资源学报,2002,17(3):270-275.[Liu Yansui, Wu Chuanjun. Situation of Landwater Resources and Analysis of Sustainable Food Security in China [J]. Journal of Natural Resources, 2002, 17(3):270-275. ]
[6]李祥妹,周龙春.基于要素成本核算的水资源管理研究[J].中国人口·资源与环境,2012,22(12):39-45. [Li Xiangmei, Zhou Longchun.Water Management Research Based on Factor Cost Accounting[J].China Population, Resources and Environment, 2012, 22(12): 39-45. ]
[7]孙才志,张蕾.中国农产品虚拟水-耕地资源区域时空差异演变[J].资源科学,2009,31(1):84-93.[Sun Caizhi, Zhang Lei. Changes in Spatial and Temporal Differences of Agricultural Product Virtual Water Versus Cultivated land in China [J].Resource Science, 2009, 31(1):84-93.]
[8]孙才志,刘玉玉,张蕾.中国农产品虚拟水与资源环境经济要素的时空匹配分析[J].资源科学,2010,32(3):512-519. [Sun Caizhi, Liu Yuyu, Zhang Lei. Analysis on the Spatialtemporal Matching of Crops Virtual Water Versus Resourcesenvironmenteconomy Factors in China [J].Resource Science, 2010, 32(3):512-519.]
[9]刘宝勤.我国粮食虚拟水流动空间格局及其调控政策[J].水利发展研究,2010,(2):16-20. [Liu Baoqin. Spatial Patterns of Chinas Virtual Water Flow for Food Crops and Its Policy Implications [J].Water Resources Development Research, 2010, (2): 16-20. ]
[10]王浩,杨贵羽,杨朝晖.水土资源约束下保障粮食安全的战略思考[J].中国科学院院刊,2013,28(3):329-336. [Wang Hao,Yang Guiyu, Yang Zhaohui. Thinking of Agricultural Development in China Based on Regional Water Resources and Land Cultivation [J]. Bulletin of Chinese Academy of Sciences, 2013, 28(3): 329-336. ]
Abstract China has achieved a tenyear consecutive grain production growth from the year 2004 to 2013. Structural adjustment among grain crops with high yielding crops replacing lowyielding ones is an important factor contributing to the output growth. Given the fact that different crops require different amounts of water and land in their production, the structural adjustment can have significant impacts on both crop yield and the usage of production resources such as water and land. This paper has estimated systematically the impacts of Chinas tenyear consecutive grain production growth on its water and land use, with emphasized analysis on the role of intercrop structural adjustment. The results show that the intercrop structural adjustment has helped to save appropriate 101.5 million mu sown area and 31.06 billion m3 water resource for the country, compared with the scenarios with no such adjustment. From the regional perspective, the impacts of structural adjustment in the North, Northeast, Northwest, Middle and Southwest China are ‘saving land and water, while that in the Southeast China is ‘saving land but using more water. As grain production has been concentrated to the northern part of the country, the continued sown area and ratio increase in highyielding but lowwater usage grain crops, such as maize in the region, has not only helped to increase the grain production, but also alleviated the water consumption burden causing by grain output growth in northern China. However, despite of these facts, Chinas tenyear consecutive grain production growth has generally intensified the shortage of its land and water resources. Given the constraint of the worsening land and water endowments, the pressure of further grain output growth will be expanding in the future, as well as facing with great ecological environment costs. Intercrop structural adjustment may exacerbate the imbalance between supply and demand of each crop, and will be more vulnerable to the world food market volatility from trade environment change and price transmission. In the future, the potential for further such adjustment with a view to increase grain output and save land and water will be limited. Therefore, to ensure food security in China, increasing domestic grain production by improving land and water usage efficiencies, tapping yield potential of lowyielding crops will be effective measures, along with appropriate utilization of world market to balance domestic food supply and demand.
Key words grain output growth; structural adjustment; water and land resources; resources consumption; food security
[4]FAO, OECD. Agricultural Outlook 2013-2022: Highlights[R].Roman: FAO, 2013.
[5]刘彦随,吴传钧.中国水土资源态势与可持续食物安全[J]. 自然资源学报,2002,17(3):270-275.[Liu Yansui, Wu Chuanjun. Situation of Landwater Resources and Analysis of Sustainable Food Security in China [J]. Journal of Natural Resources, 2002, 17(3):270-275. ]
[6]李祥妹,周龙春.基于要素成本核算的水资源管理研究[J].中国人口·资源与环境,2012,22(12):39-45. [Li Xiangmei, Zhou Longchun.Water Management Research Based on Factor Cost Accounting[J].China Population, Resources and Environment, 2012, 22(12): 39-45. ]
[7]孙才志,张蕾.中国农产品虚拟水-耕地资源区域时空差异演变[J].资源科学,2009,31(1):84-93.[Sun Caizhi, Zhang Lei. Changes in Spatial and Temporal Differences of Agricultural Product Virtual Water Versus Cultivated land in China [J].Resource Science, 2009, 31(1):84-93.]
[8]孙才志,刘玉玉,张蕾.中国农产品虚拟水与资源环境经济要素的时空匹配分析[J].资源科学,2010,32(3):512-519. [Sun Caizhi, Liu Yuyu, Zhang Lei. Analysis on the Spatialtemporal Matching of Crops Virtual Water Versus Resourcesenvironmenteconomy Factors in China [J].Resource Science, 2010, 32(3):512-519.]
[9]刘宝勤.我国粮食虚拟水流动空间格局及其调控政策[J].水利发展研究,2010,(2):16-20. [Liu Baoqin. Spatial Patterns of Chinas Virtual Water Flow for Food Crops and Its Policy Implications [J].Water Resources Development Research, 2010, (2): 16-20. ]
[10]王浩,杨贵羽,杨朝晖.水土资源约束下保障粮食安全的战略思考[J].中国科学院院刊,2013,28(3):329-336. [Wang Hao,Yang Guiyu, Yang Zhaohui. Thinking of Agricultural Development in China Based on Regional Water Resources and Land Cultivation [J]. Bulletin of Chinese Academy of Sciences, 2013, 28(3): 329-336. ]
Abstract China has achieved a tenyear consecutive grain production growth from the year 2004 to 2013. Structural adjustment among grain crops with high yielding crops replacing lowyielding ones is an important factor contributing to the output growth. Given the fact that different crops require different amounts of water and land in their production, the structural adjustment can have significant impacts on both crop yield and the usage of production resources such as water and land. This paper has estimated systematically the impacts of Chinas tenyear consecutive grain production growth on its water and land use, with emphasized analysis on the role of intercrop structural adjustment. The results show that the intercrop structural adjustment has helped to save appropriate 101.5 million mu sown area and 31.06 billion m3 water resource for the country, compared with the scenarios with no such adjustment. From the regional perspective, the impacts of structural adjustment in the North, Northeast, Northwest, Middle and Southwest China are ‘saving land and water, while that in the Southeast China is ‘saving land but using more water. As grain production has been concentrated to the northern part of the country, the continued sown area and ratio increase in highyielding but lowwater usage grain crops, such as maize in the region, has not only helped to increase the grain production, but also alleviated the water consumption burden causing by grain output growth in northern China. However, despite of these facts, Chinas tenyear consecutive grain production growth has generally intensified the shortage of its land and water resources. Given the constraint of the worsening land and water endowments, the pressure of further grain output growth will be expanding in the future, as well as facing with great ecological environment costs. Intercrop structural adjustment may exacerbate the imbalance between supply and demand of each crop, and will be more vulnerable to the world food market volatility from trade environment change and price transmission. In the future, the potential for further such adjustment with a view to increase grain output and save land and water will be limited. Therefore, to ensure food security in China, increasing domestic grain production by improving land and water usage efficiencies, tapping yield potential of lowyielding crops will be effective measures, along with appropriate utilization of world market to balance domestic food supply and demand.
Key words grain output growth; structural adjustment; water and land resources; resources consumption; food security