基于多目标优化的生态工业园区产业规划建模与NSGA—Ⅱ—IFD算法求解

2014-09-21 05:21宋叙言沈江
中国人口·资源与环境 2014年9期
关键词:多目标优化

宋叙言 沈江

摘要 生态工业园区的建设是我国经济和社会发展的重要驱动因素,而园区的

产业规划是园区建设的关键环节,在一定程度上决定着园区能否充分发挥作用。

学界对于生态工业园区产业规划的研究大多集中在定性研究,提出了很多生态工

业园区规划的原则和思路方法,而园区的产业规划受到经济、环境、社会等多个

层面影响,是个复杂的系统问题。只有从定量的角度出发,针对实际情况提取科

学问题,建立普适的规划方法,才能从根本上解决生态工业园区产业规划的问题。

本文针对生态工业园区规划的实际情况提取科学问题,建立普适的生态工业园区

产业规划方法,旨在建立该问题的优化模型,并提出求解算法。根据产业规划实

际情况,以“后期的内生动力需求最大化”和“初期的经济增长需求最大化”两

个目标建立模型,充分考虑园区在资源节约和环境友好的条件下长久运营和可持

续发展的要求以及在建设和运营初期经济增长与投入成本综合作用为地区的经

济发展带来效益的要求。进行数学建模后,研究求解该多目标优化数学模型最优

解的方法,将不可行度(IFD)选择操作引入改进型非劣分类遗传算法(NSGA-Ⅱ),

用此改进的NSGA-Ⅱ-IFD算法求解模型,最后通过泰安市泰山生态工业园产业规

划的实例验证该模型与算法的有效性。实证结果表明:①运用本文研究的模型

和算法能够得到3个Pareto最优解,形成Pareto最优前端,决策者可根据对两个

目标的偏好选择产业规划最终方案;②除非到达企业选择数上限,若选择某产

业链,则产业中的所有企业都将被选择,这与生态产业链集聚效应相吻合。

关键词 生态工业园区;产业规划;多目标优化;NSGAⅡIFD算法

中图分类号 F205

文献标识码 A

文章编号 1002-2104(2014)09-0068-07

随着我国社会文明的进步,可持续发展战略的进一步实践和落实,生态和环境效益日益受到重视,逐渐成为与经济发展同等重要的关键因素。党的十八届三中全会首次提出了“生态文明”概念,保护环境、节约资源成为了文明社会的重要标志。而在“生态文明”构建中,生态工业园区的建设和发展具有重要的作用和意义。20 世纪70 年代,丹麦建立了第一个生态工业园—Kalunborg生态工业园,此后世界很多国家和地区先后出现了许多包含物质交换与废物循环的共生体项目和计划,都被称为生态工业园区[1]。生态工业园区在世界各地的兴建也引发学术界的大量研究和讨论。

国外对生态工业园区的研究很多,从1989年,Frosch和Gallopoulos[2]提出工业生态学以来,JouniKorhonen[3],David Gibbs和Pauline Deutz[4]等从不同角度论述了工业生态系统特征,为开展生态工业园区的研究奠定了基础。我国生态工业园区建设处于初期阶段,对其研究也基本集中在园区评价方面,如成贝贝等[5]以低碳工业园为研究对象,提出规划原则,并构建基于产出体系、资源体系、生活指标、政策指标的评价指标体系。万林葳[6]运用蚁群算法对与生态工业园区环境效益相关的分类指数公式和综合指数公式进行优化,并构建了环境效益评价模型。但仅仅研究园区的评价,无法从根本上解决我国生态工业园的产业规划和建设缺少科学指导这一问题,园区在经济、环境和社会效益上的功能也就无法充分实现。

对于生态工业园区产业规划的研究大多集中在定性研究。刘娟、谢家平[7]从工业生态、生态系统和景观生态三方面论述了生态工业园区运作的基础理论,并分析了园区规划的原则和程序。刘永清[8]分析了基于循环经济的生态工业园区构建途径,包括企业整合、资源整合、产业链优化和基础设施优化等。梅林海、张红红[9]用博弈分析方法,对园区内同类企业、不同类企业、企业与政府间的多种利益博弈格局进行分析,并结合广州开发区的实践,探讨相关解决措施及建议。田金平等人[10]从微观、产业集群、园区和社会四个层面总结了中国生态工业园区的发展模式并提出相应建议。其他一些学者对具体生态工业园区进行实证研究,探讨其规划原则与方法,并对发展路径提出建议,如对三峡库区生态工业园的研究[11]以及山东临沂高新技术产业开发区的研究[12]等。

上述研究提出了很多生态工业园区规划的原则和思路方法,但是生态工业园区的产业规划面临经济、环境、社会等多个维度的综合影响,是一个复杂的系统问题,只有从定量的角度出发,针对实际情况提取科学问题,建立普适的规划方法,才能从根本上解决生态工业园区产业规划的问题。因此,本文基于多目标优化,充分分析生态工业园区建设和运营初期的经济增长需求和后期的内生动力需求,综合环境保护、资源消耗等因素,提出产业规划多目标优化模型,并设计求解模型的NSGAⅡIFD算法,最后通过泰安市泰山生态工业园产业规划的实例验证该模型与算法的适用性。

1.2 数学建模

1.2.1 多目标函数

根据生态工业园区的定义,其规划与建设应区别于传统的工业园区,在重视经济发展的同时,兼顾环境和社会效益,即满足经济、环境和社会效益的协调统一。因此,根据生态工业园区的功能和定位,在产业规划的决策问题上,需要同时考虑建设和运营初期的经济增长需求和后期的内生动力需求来建立目标函数。

(1)后期的内生动力需求最大化。

可持续发展原则是生态工业园区建设和发展的重要原则,即使得园区具备足够的内生动力,以保证在资源节约和环境友好的条件下长久的运营和发展,因此产业规划需要首先考虑园区内生动力需求最大化。内生动力指的是园区企业在资源节约和环境友好方面的能力,园区企业的内生动力可以用“3R”原则进行考量。“3R”是减量化(Reduce)、再使用(Reuse)、再循环(Recycle)英文首字母的简称,是循环绿色经济的三个重要原则,即在最少的自然资源消耗下,通过节约、回收以及再利用废旧资源,最大程度的开发和利用资源的价值,减少消耗与浪费,以满足经济社会的发展需要。“3R”关注经济发展与资源消耗和环境破坏的比值,这个比值衡量了生态工业园区可持续发展能力,这样就可以以“3R”为基础构建评价内生动力的指标体系,如图1所示。

上述机制中,Pareto支配关系“”指的是基于约束主导原理的不同个体之间的支配关系,也就是将所有可行解与不可行解同时进行排序和选择。通过以上IFD非支配排序,形成不同排序级别的非劣前端F1,F2…,对于处于同一等级的非劣前端的所有个体拥有相同的概率被复制。之后对种群执行小生境锦标赛选则,采用精英策略防止父代优良个体遗传到下一代时丢失以及拥挤比较操作算子保持种群的多样性,这一点与原始NSGAⅡ算法相同,再对种群进行交叉和变异,形成新的种群,进行迭代,直至形成Pareto最优解前端或者达到迭代次数,完成求解。

3 泰安市泰山生态工业园产业规划实证

泰山生态工业园位于山东省泰安市泰山区,园区占地面积为2.1 km2,至2012年底,泰山生态工业园入驻规模以上工业企业44家,实现工业总产值176.2亿元,利税17.7亿元,税收5.8亿元,对全区经济增长贡献率达39.2%。为满足国家对经济、社会发展的新需求,泰山生态工业园拟向新的生态工业园区进行转型,重新进行产业规划。

备选的产业和企业如下表1所示。

通过具体的Pareto最优解也可以看出,产业链的集聚效应,除非到达企业选择数上限,选择某产业链,则产业中的所有企业都被选择。这一点与其他学者的生态产业链理论也是互相印证的。

4 结 论

我国经济发展转型进入关键时期,生态工业园区作为国家经济发展的重要载体,能否实现其经济、环境、社会协调发展的功能,将对我国生态文明建设及可持续发展战略的实行产生重大影响。生态工业园区的产业规划在园区建设和发展中起着至关重要的作用。而园区的产业规划受到经济、环境、社会等多个层面影响,是个复杂的系统问题。本文以多目标优化为核心内容,建立该问题的优化模型,根据园区产业规划实际问题,以“后期的内生动力需求

最大化”和“初期的经济增长需求最大化”两个目标建立多目标优化模型,同时界定了模型的约束条件。为了求解该带约束的多目标优化模型,在原有的NSGAⅡ基础上,将IFD选择操作引入算法,形成改进的NSGAⅡIFD算法,求解本模型。最后通过泰安市泰山生态工业园产业规划的实例验证该模型与算法的有效性。

研究结果表明:

(1)除非到达企业选择数上限,若选择某产业链,则产业中的所有企业都将被选择,这与生态产业链集聚效应相吻合。

(2)对于决策者,可以根据Pareto前端,选择对两个目标偏好不同的Pareto最优解。

(3)最终得出的Pareto最优解只有3个,可见,算法在保持种群多样性以及形成Pareto前端上仍需改进。

本文在已有备选产业和企业的前提下,从定量的经济、环境、社会效益最大化的角度,为生态工业园区的产业规划提供了有益的科学指导与决策支持,促进生态工业园区进一步优化发展。在此基础上,综合考虑区域经济发展的政策导向、资源限制等其他因素,可以做出适合园区发展的最优决策。

(编辑:常 勇)

参考文献(References)

[1]毛瑜, 张龙江, 张永春, 等. 生态工业园区研究进展及展望[J]. 生态经济, 2010(12):113-116. [Mao Yu, Zhang Longjiang, Zhang Yongchun, et al. Progression and Perspective in Ecoindustrial Park Research [J]. Ecological Economy, 2010,(12):113-116.]

[2]Frosch R A, Gallopoulos N E. Strategies for Manufacturing [J]. Scientific American, 1989, 261 (3):144-152.

[3]Korhonen J. Four Ecosystem Principles for an Industrial Ecosystem [J]. Journal of Cleaner Production, 2001, 9(3):253-259.

[4]Gibbs D, Deutz P. Reflections on Implementing Industrial Ecology Through Ecoindustrial Park Development [J]. Journal of Cleaner Production, 2007, 15(17):1683-1695.

[5]成贝贝, 汪鹏, 赵黛青, 等. 低碳工业园区规划方法和评价指标体系研究 [J]. 生态经济, 2013,(5):126-135. [Cheng Beibei, Wang Peng, Zhao Daiqing, et al. Research on Lowcarbon Industrial Park Planning Methods and Evaluation Index System [J]. Ecological Economy, 2013,(5):126-135.]

[6]万林葳. 基于蚁群算法的生态工业园区环境效益评价 [J]. 统计与决策, 2012,(17):49-51. [Wan Linwei. Environmental Benefit Evaluation of Ecoindustrial Park Based on Ant Colony Algorithm [J]. Statistics and Decision, 2012,(17):49-51.]

[7]刘娟,谢家平. 生态工业园区规划的理论综述[J]. 未来与发展,2009,(6):21-25.[Liu Juan, Xie Jiaping. A Study Review on the Designing of Ecoindustrial Parks [J].Future and Development, 2009,(6):21-25.]

[8]刘永清. 基于循环经济的生态工业园区构建研究[J]. 科技进步与对策,2009,26(5):52-55.[Liu Yongqing. Based on the Circular Economy of the Research on the Construction of Ecological Industrial Park [J]. Science & Technology Progress and Policy, 2009,26(5):52-55.]

[9]梅林海,张红红. 生态工业园区企业间的利益博弈分析[J]. 暨南学报:哲学社会科学版,2008,(3):53-58.[Mei Linhai, Zhang Honghong. Analysis on the Game Theory View of the Benefits between the Industries in Ecoindustrial Parks [J]. Journal of Jinan University:Philosophy & Social Science Edition, 2008,(3):53-58.]

[10]田金平,刘巍,李星,等. 中国生态工业园区发展模式研究[J]. 中国人口·资源与环境,2012,22(7):60-66.[Tian Jinping, Liu Wei, Li Xing, et al. Study of Ecoindustrial Park Development Mode in China [J]. China Population, Resources and Environment, 2012,22(7):60-66.]

[11]江新,赵静. 基于系统论对三峡库区生态工业园发展路径优化的探讨:以开县生态工业园区发展思路为例[J]. 生态经济,2012,(6):113-116.[Jiang Xin, Zhao Jing.Discussion of EcoIndustrial Parks Development Path Optimization in the Three Gorges Reservoir Area Based on the System Theory: A Case Study of Kaixian EcoIndustrial Park Development Ideas [J]. Ecological Economy, 2012,(6):113-116.]

[12]王少华,刘胜发. 生态工业园区产业规划布局研究:以山东临沂高新技术产业开发区为例[J]. 环境科学与管理,2007,32(11):154-157.[Wang Shaohua, Liu Shengfa. The Research of EcoIndustrial Park Industry Planning and Layouts: Linyi HighTech Industrial Development Zone [J]. Environmental Science and Management, 2007,32(11):154-157.]

[13]Deb K, Agrawal S, Pratap A, et al. A Fast Elitist Nondominated Sorting Genetic Algorithm for Multiobjective Optimization:NSGAII [R]. KanGAL Report 200001.Kanpur:Indian Institute of Technology,2000.

[14]蔺宇,康力,史英杰. 行人导向标识布设的多目标优化建模与IFDNSGAⅡ算法求解[J]. 系统管理学报,2013,22(4):553-559.[Lin Yu, Kang Li, Shi Yingjie.Multiobjective Modeling and Optimization for Layout of Pedestrianguidance Signs with IFDNSGAAlgorithm [J]. Journal of Systems & Management, 2013,22(4):553-559.]

[15]Deb K, Pratap A, Meyarivan T. Constrained Test Problems for Multiobjective Evolutionary Optimization [R].KanGAL Report 200002.Kanpur:Indian Institute Technology,2002.

[16]王跃宣,刘连臣,牟盛静.处理带约束的多目标优化进化算法[J].清华大学学报:自然科学版,2005,45(1):103-106.[Wang Yuexuan, Liu Lianchen, Mu Shengjing.Constrained Multiobjective Optimization Evolutionary Algorithm [J]. Journal of Tsinghua University:Science and Technology Edition, 2005,45(1):103-106.]

Abstract Ecoindustrial park is an important driving factor for Chinas economic and social development. The industrial planning is a crucial procedure for the construction of ecoindustrial park, playing an important role on defining the function of the park. Experts attached importance on qualitative research, carried out different disciplines and methods on ecoindustrial park planning. However, the planning of ecoindustrial parks is a complex systematic issue, involving many aspects such as economy, environment and society, etc. Only by quantitative methods, based on practical situation, can the universal planning method be established. Furthermore, the planning issue will be resolved. From the view of quantitative analysis, this research tried to find scientific issues from facts, established a universal planning method, and constructed an optimization model on the industrial planning of the park. After that, a solution algorithm was proposed. Based on the current situation of industrial planning, two objectives, which are ‘maximization of internal endogenous power demand in the later period and ‘maximization of economic development demand in the earlier period, were applied in the model, fully considering the coordination of longterm operation, sustainable development, economic development, costs and benefits, etc. After mathematic modeling, a method was worked out to calculate this multiobjective model, in which infeasible degree (IFD) was combined with NSGAⅡ, forming NSGAⅡIFD solving model. Taishan Ecoindustrial Park in Taian was used as an example to verify the effectiveness of this model and algorithm. The result indicated that ① the model and algorithm could be used to find proper Pareto optimization solutions (three in this research), forming the Pareto optimization frontier to help the decision maker with different objective preference to make decision;② unless the enterprise amount reached the upper limit, all enterprises in the same business line would be chosen, in accordance with the cluster effect of ecological industry chain.

Key words ecoindustrial parks; industrial planning; multiobjective optimization; NSGAIIIFD algorithm

[8]刘永清. 基于循环经济的生态工业园区构建研究[J]. 科技进步与对策,2009,26(5):52-55.[Liu Yongqing. Based on the Circular Economy of the Research on the Construction of Ecological Industrial Park [J]. Science & Technology Progress and Policy, 2009,26(5):52-55.]

[9]梅林海,张红红. 生态工业园区企业间的利益博弈分析[J]. 暨南学报:哲学社会科学版,2008,(3):53-58.[Mei Linhai, Zhang Honghong. Analysis on the Game Theory View of the Benefits between the Industries in Ecoindustrial Parks [J]. Journal of Jinan University:Philosophy & Social Science Edition, 2008,(3):53-58.]

[10]田金平,刘巍,李星,等. 中国生态工业园区发展模式研究[J]. 中国人口·资源与环境,2012,22(7):60-66.[Tian Jinping, Liu Wei, Li Xing, et al. Study of Ecoindustrial Park Development Mode in China [J]. China Population, Resources and Environment, 2012,22(7):60-66.]

[11]江新,赵静. 基于系统论对三峡库区生态工业园发展路径优化的探讨:以开县生态工业园区发展思路为例[J]. 生态经济,2012,(6):113-116.[Jiang Xin, Zhao Jing.Discussion of EcoIndustrial Parks Development Path Optimization in the Three Gorges Reservoir Area Based on the System Theory: A Case Study of Kaixian EcoIndustrial Park Development Ideas [J]. Ecological Economy, 2012,(6):113-116.]

[12]王少华,刘胜发. 生态工业园区产业规划布局研究:以山东临沂高新技术产业开发区为例[J]. 环境科学与管理,2007,32(11):154-157.[Wang Shaohua, Liu Shengfa. The Research of EcoIndustrial Park Industry Planning and Layouts: Linyi HighTech Industrial Development Zone [J]. Environmental Science and Management, 2007,32(11):154-157.]

[13]Deb K, Agrawal S, Pratap A, et al. A Fast Elitist Nondominated Sorting Genetic Algorithm for Multiobjective Optimization:NSGAII [R]. KanGAL Report 200001.Kanpur:Indian Institute of Technology,2000.

[14]蔺宇,康力,史英杰. 行人导向标识布设的多目标优化建模与IFDNSGAⅡ算法求解[J]. 系统管理学报,2013,22(4):553-559.[Lin Yu, Kang Li, Shi Yingjie.Multiobjective Modeling and Optimization for Layout of Pedestrianguidance Signs with IFDNSGAAlgorithm [J]. Journal of Systems & Management, 2013,22(4):553-559.]

[15]Deb K, Pratap A, Meyarivan T. Constrained Test Problems for Multiobjective Evolutionary Optimization [R].KanGAL Report 200002.Kanpur:Indian Institute Technology,2002.

[16]王跃宣,刘连臣,牟盛静.处理带约束的多目标优化进化算法[J].清华大学学报:自然科学版,2005,45(1):103-106.[Wang Yuexuan, Liu Lianchen, Mu Shengjing.Constrained Multiobjective Optimization Evolutionary Algorithm [J]. Journal of Tsinghua University:Science and Technology Edition, 2005,45(1):103-106.]

Abstract Ecoindustrial park is an important driving factor for Chinas economic and social development. The industrial planning is a crucial procedure for the construction of ecoindustrial park, playing an important role on defining the function of the park. Experts attached importance on qualitative research, carried out different disciplines and methods on ecoindustrial park planning. However, the planning of ecoindustrial parks is a complex systematic issue, involving many aspects such as economy, environment and society, etc. Only by quantitative methods, based on practical situation, can the universal planning method be established. Furthermore, the planning issue will be resolved. From the view of quantitative analysis, this research tried to find scientific issues from facts, established a universal planning method, and constructed an optimization model on the industrial planning of the park. After that, a solution algorithm was proposed. Based on the current situation of industrial planning, two objectives, which are ‘maximization of internal endogenous power demand in the later period and ‘maximization of economic development demand in the earlier period, were applied in the model, fully considering the coordination of longterm operation, sustainable development, economic development, costs and benefits, etc. After mathematic modeling, a method was worked out to calculate this multiobjective model, in which infeasible degree (IFD) was combined with NSGAⅡ, forming NSGAⅡIFD solving model. Taishan Ecoindustrial Park in Taian was used as an example to verify the effectiveness of this model and algorithm. The result indicated that ① the model and algorithm could be used to find proper Pareto optimization solutions (three in this research), forming the Pareto optimization frontier to help the decision maker with different objective preference to make decision;② unless the enterprise amount reached the upper limit, all enterprises in the same business line would be chosen, in accordance with the cluster effect of ecological industry chain.

Key words ecoindustrial parks; industrial planning; multiobjective optimization; NSGAIIIFD algorithm

[8]刘永清. 基于循环经济的生态工业园区构建研究[J]. 科技进步与对策,2009,26(5):52-55.[Liu Yongqing. Based on the Circular Economy of the Research on the Construction of Ecological Industrial Park [J]. Science & Technology Progress and Policy, 2009,26(5):52-55.]

[9]梅林海,张红红. 生态工业园区企业间的利益博弈分析[J]. 暨南学报:哲学社会科学版,2008,(3):53-58.[Mei Linhai, Zhang Honghong. Analysis on the Game Theory View of the Benefits between the Industries in Ecoindustrial Parks [J]. Journal of Jinan University:Philosophy & Social Science Edition, 2008,(3):53-58.]

[10]田金平,刘巍,李星,等. 中国生态工业园区发展模式研究[J]. 中国人口·资源与环境,2012,22(7):60-66.[Tian Jinping, Liu Wei, Li Xing, et al. Study of Ecoindustrial Park Development Mode in China [J]. China Population, Resources and Environment, 2012,22(7):60-66.]

[11]江新,赵静. 基于系统论对三峡库区生态工业园发展路径优化的探讨:以开县生态工业园区发展思路为例[J]. 生态经济,2012,(6):113-116.[Jiang Xin, Zhao Jing.Discussion of EcoIndustrial Parks Development Path Optimization in the Three Gorges Reservoir Area Based on the System Theory: A Case Study of Kaixian EcoIndustrial Park Development Ideas [J]. Ecological Economy, 2012,(6):113-116.]

[12]王少华,刘胜发. 生态工业园区产业规划布局研究:以山东临沂高新技术产业开发区为例[J]. 环境科学与管理,2007,32(11):154-157.[Wang Shaohua, Liu Shengfa. The Research of EcoIndustrial Park Industry Planning and Layouts: Linyi HighTech Industrial Development Zone [J]. Environmental Science and Management, 2007,32(11):154-157.]

[13]Deb K, Agrawal S, Pratap A, et al. A Fast Elitist Nondominated Sorting Genetic Algorithm for Multiobjective Optimization:NSGAII [R]. KanGAL Report 200001.Kanpur:Indian Institute of Technology,2000.

[14]蔺宇,康力,史英杰. 行人导向标识布设的多目标优化建模与IFDNSGAⅡ算法求解[J]. 系统管理学报,2013,22(4):553-559.[Lin Yu, Kang Li, Shi Yingjie.Multiobjective Modeling and Optimization for Layout of Pedestrianguidance Signs with IFDNSGAAlgorithm [J]. Journal of Systems & Management, 2013,22(4):553-559.]

[15]Deb K, Pratap A, Meyarivan T. Constrained Test Problems for Multiobjective Evolutionary Optimization [R].KanGAL Report 200002.Kanpur:Indian Institute Technology,2002.

[16]王跃宣,刘连臣,牟盛静.处理带约束的多目标优化进化算法[J].清华大学学报:自然科学版,2005,45(1):103-106.[Wang Yuexuan, Liu Lianchen, Mu Shengjing.Constrained Multiobjective Optimization Evolutionary Algorithm [J]. Journal of Tsinghua University:Science and Technology Edition, 2005,45(1):103-106.]

Abstract Ecoindustrial park is an important driving factor for Chinas economic and social development. The industrial planning is a crucial procedure for the construction of ecoindustrial park, playing an important role on defining the function of the park. Experts attached importance on qualitative research, carried out different disciplines and methods on ecoindustrial park planning. However, the planning of ecoindustrial parks is a complex systematic issue, involving many aspects such as economy, environment and society, etc. Only by quantitative methods, based on practical situation, can the universal planning method be established. Furthermore, the planning issue will be resolved. From the view of quantitative analysis, this research tried to find scientific issues from facts, established a universal planning method, and constructed an optimization model on the industrial planning of the park. After that, a solution algorithm was proposed. Based on the current situation of industrial planning, two objectives, which are ‘maximization of internal endogenous power demand in the later period and ‘maximization of economic development demand in the earlier period, were applied in the model, fully considering the coordination of longterm operation, sustainable development, economic development, costs and benefits, etc. After mathematic modeling, a method was worked out to calculate this multiobjective model, in which infeasible degree (IFD) was combined with NSGAⅡ, forming NSGAⅡIFD solving model. Taishan Ecoindustrial Park in Taian was used as an example to verify the effectiveness of this model and algorithm. The result indicated that ① the model and algorithm could be used to find proper Pareto optimization solutions (three in this research), forming the Pareto optimization frontier to help the decision maker with different objective preference to make decision;② unless the enterprise amount reached the upper limit, all enterprises in the same business line would be chosen, in accordance with the cluster effect of ecological industry chain.

Key words ecoindustrial parks; industrial planning; multiobjective optimization; NSGAIIIFD algorithm

猜你喜欢
多目标优化
基于多目标优化的生鲜食品联合库存研究
改进的多目标启发式粒子群算法及其在桁架结构设计中的应用
群体多目标优化问题的权序α度联合有效解
云计算中虚拟机放置多目标优化
狼群算法的研究
基于参数自适应蚁群算法对多目标问题的优化
基于多目标优化的进化算法研究
多目标模糊优化方法在桥梁设计中应用
一种求多目标优化问题的正交多Agent遗传算法
基于蚁群优化的多目标社区检测算法