含绝对值不等式的解法比较

2014-09-17 00:03曾光
广东教育·高中 2014年8期
关键词:同理数轴理科

曾光

在2014年的高考中,有多个地方的高考题均出现了含绝对值不等式的题目.虽然难度普遍为中低档,但是我们需要研究的问题是如何能做到准确率高、耗时少.选择恰当的解法是关键,那么含绝对值不等式的问题有哪些解法呢?选择何种解法最为有利?下面让我们一起来探讨这个问题.首先请用心体会以下的解法比较:

(2014年高考广东理科数学第9题)不等式│x-1│+

│x+2│ ≥5的解集为 .

【分析】含绝对值不等式的解法一般有三种,分别是零点区域法、数轴法和图像法.

⑴零点区域法(分类讨论思想):令x-1=0及x+2=0,得x1=1,x2=-2. x1,x2把实数轴分成三个区域:x<-2,-2≤x≤1,x>1.

①当x>1时,原不等式可去掉绝对值化为x-1+x+2≥5,解得:x≥2,考虑x>1时得x≥2.

②同理当-2≤x≤1时,原不等式可去掉绝对值化为1-x+x+2≥5,得3≥5,无解.

③当x≤-2时,原不等式可去掉绝对值化为1-x-x-2≥5,解得:x≤-3,考虑x<-2时得x<-3.

综合①②③得x∈(-∞,-3]∪[2,+∞).

⑵数轴法:从几何意义方面去考虑.│x-1│的几何意义是表示x与1的距离,│x+2│的几何意义是表示x与-2的距离,原不等式的几何意义是求x与1的距离及与-2的距离之和大于等于5,观察数轴:

当x位于-2与1之间时,x与1的距离及与-2的距离之和为3,即│x-1│+│x+2│=3;当x在1的右边时,取x=2,有x与1的距离及与-2的距离之和为5,即│x-1│+│x+2│=5,因此当x≥2时,有│x-1│+│x+2│≥5.同理,当x在-2的左边时,取x=-3,有x与1的距离及与-2的距离之和为5,即│x-1│+│x+2│=5,因此当x≤-3时,有│x-1│+│x+2│≥5. 综合以上得x∈(-∞,-3]∪[2,+∞).

⑶图像法:令f(x)=│x-1│+│x+2│=2x+1,x>1

3,-2≤x≤1

-2x-1,x<-2画出其函数图像如下:

由图像可得,当x≥2或x≤-3时,有f(x)≥5,即│x-1│+│x+2│≥5.

【点评】比较以上三种解法,零点区域法的应用范围是最广的,蕴含了非常重要的分类讨论的思想;而数轴法的解题速度是最快的,但应用范围较窄;而图像法则是运用了数形结合的思想.为了更深刻地体会以上三种解法的特点,再看以下这道题:

(2014年高考重庆理科数学第16题)若不等式│2x-1│+│x+2│≥a2+a+2对任意实数x恒成立,则实数a的取值范围是____________.

【分析】本题综合考查绝对值不等式及一元二次不等式的知识.令f(x)=│2x-1│+│x+2│,观察│2x-1│+│x+2│的特点得出,不适合用数轴法,而零点区域法和图像法均可以.下面比较一下这两种解法:

零点区域法:令2x-1=0及x+2=0,得x1=,x2=-2.

x1,x2把实数轴分成三个区域:x<-2,-2≤x≤,x>.

①当x>时,原不等式可去掉绝对值化为f(x)=3x+1,得f(x)>.

②同理当-2≤x≤时,原不等式可去掉绝对值化为f(x)=-x+3,得f(x)≥.

③当x<-2时,原不等式可去掉绝对值化为f(x)=-3x-1,得f(x)>5.

综上得:│2x-1│+│x+2│≥,因此有a2+a+2≤,

整理得:(2a-1)(a+1)≤0,

解得:-1≤a≤.

图像法:f(x)=│2x-1│+│x+2│=3x+1,x>

-x+3,-2≤x≤

-3x-1,x<-2画

出其函数图像如下:

由图像可得:│2x-1│+│x+2│≥,因此有a2+a+2≤,整理得:(2a-1)(a+1)≤0,解得-1≤a≤.

【点评】1. 本题不适合用数轴法,因为两个绝对值里x前面的系数不相同;2.对比零点区域法和图像法,由于本题去绝对值后各段均为一次函数,图像较简单,因此图像法略胜一筹.

【巩固练习】(2014年高考江西理科数学第11题)(不等式选做题)对任意x,y∈R,│x-1│+│x│+│y-1│+ │y+1│的最小值为( )

A. 1 B. 2 C. 3 D. 4

【提示】令f(x)=│x-1│+│x│,g(y)=│y-1│+│y+1│,分别求出f(x),g(y)的最小值后加起来即可.同学们想一想,动手做一做,本题用哪种方法最快?

【总结】1. 若每一个绝对值里前面x的系数都可化为1的话,则用数轴法是最方便的.

2. 在不能用数轴法的情况下,若能画出函数图像,一般来说图像法比零点区域法略胜一筹.

3. 零点区域法应用范围较广,可以解决难度较大的问题,如含参数的题目.

(作者单位:佛山市顺德区乐从中学)

责任编校 徐国坚endprint

在2014年的高考中,有多个地方的高考题均出现了含绝对值不等式的题目.虽然难度普遍为中低档,但是我们需要研究的问题是如何能做到准确率高、耗时少.选择恰当的解法是关键,那么含绝对值不等式的问题有哪些解法呢?选择何种解法最为有利?下面让我们一起来探讨这个问题.首先请用心体会以下的解法比较:

(2014年高考广东理科数学第9题)不等式│x-1│+

│x+2│ ≥5的解集为 .

【分析】含绝对值不等式的解法一般有三种,分别是零点区域法、数轴法和图像法.

⑴零点区域法(分类讨论思想):令x-1=0及x+2=0,得x1=1,x2=-2. x1,x2把实数轴分成三个区域:x<-2,-2≤x≤1,x>1.

①当x>1时,原不等式可去掉绝对值化为x-1+x+2≥5,解得:x≥2,考虑x>1时得x≥2.

②同理当-2≤x≤1时,原不等式可去掉绝对值化为1-x+x+2≥5,得3≥5,无解.

③当x≤-2时,原不等式可去掉绝对值化为1-x-x-2≥5,解得:x≤-3,考虑x<-2时得x<-3.

综合①②③得x∈(-∞,-3]∪[2,+∞).

⑵数轴法:从几何意义方面去考虑.│x-1│的几何意义是表示x与1的距离,│x+2│的几何意义是表示x与-2的距离,原不等式的几何意义是求x与1的距离及与-2的距离之和大于等于5,观察数轴:

当x位于-2与1之间时,x与1的距离及与-2的距离之和为3,即│x-1│+│x+2│=3;当x在1的右边时,取x=2,有x与1的距离及与-2的距离之和为5,即│x-1│+│x+2│=5,因此当x≥2时,有│x-1│+│x+2│≥5.同理,当x在-2的左边时,取x=-3,有x与1的距离及与-2的距离之和为5,即│x-1│+│x+2│=5,因此当x≤-3时,有│x-1│+│x+2│≥5. 综合以上得x∈(-∞,-3]∪[2,+∞).

⑶图像法:令f(x)=│x-1│+│x+2│=2x+1,x>1

3,-2≤x≤1

-2x-1,x<-2画出其函数图像如下:

由图像可得,当x≥2或x≤-3时,有f(x)≥5,即│x-1│+│x+2│≥5.

【点评】比较以上三种解法,零点区域法的应用范围是最广的,蕴含了非常重要的分类讨论的思想;而数轴法的解题速度是最快的,但应用范围较窄;而图像法则是运用了数形结合的思想.为了更深刻地体会以上三种解法的特点,再看以下这道题:

(2014年高考重庆理科数学第16题)若不等式│2x-1│+│x+2│≥a2+a+2对任意实数x恒成立,则实数a的取值范围是____________.

【分析】本题综合考查绝对值不等式及一元二次不等式的知识.令f(x)=│2x-1│+│x+2│,观察│2x-1│+│x+2│的特点得出,不适合用数轴法,而零点区域法和图像法均可以.下面比较一下这两种解法:

零点区域法:令2x-1=0及x+2=0,得x1=,x2=-2.

x1,x2把实数轴分成三个区域:x<-2,-2≤x≤,x>.

①当x>时,原不等式可去掉绝对值化为f(x)=3x+1,得f(x)>.

②同理当-2≤x≤时,原不等式可去掉绝对值化为f(x)=-x+3,得f(x)≥.

③当x<-2时,原不等式可去掉绝对值化为f(x)=-3x-1,得f(x)>5.

综上得:│2x-1│+│x+2│≥,因此有a2+a+2≤,

整理得:(2a-1)(a+1)≤0,

解得:-1≤a≤.

图像法:f(x)=│2x-1│+│x+2│=3x+1,x>

-x+3,-2≤x≤

-3x-1,x<-2画

出其函数图像如下:

由图像可得:│2x-1│+│x+2│≥,因此有a2+a+2≤,整理得:(2a-1)(a+1)≤0,解得-1≤a≤.

【点评】1. 本题不适合用数轴法,因为两个绝对值里x前面的系数不相同;2.对比零点区域法和图像法,由于本题去绝对值后各段均为一次函数,图像较简单,因此图像法略胜一筹.

【巩固练习】(2014年高考江西理科数学第11题)(不等式选做题)对任意x,y∈R,│x-1│+│x│+│y-1│+ │y+1│的最小值为( )

A. 1 B. 2 C. 3 D. 4

【提示】令f(x)=│x-1│+│x│,g(y)=│y-1│+│y+1│,分别求出f(x),g(y)的最小值后加起来即可.同学们想一想,动手做一做,本题用哪种方法最快?

【总结】1. 若每一个绝对值里前面x的系数都可化为1的话,则用数轴法是最方便的.

2. 在不能用数轴法的情况下,若能画出函数图像,一般来说图像法比零点区域法略胜一筹.

3. 零点区域法应用范围较广,可以解决难度较大的问题,如含参数的题目.

(作者单位:佛山市顺德区乐从中学)

责任编校 徐国坚endprint

在2014年的高考中,有多个地方的高考题均出现了含绝对值不等式的题目.虽然难度普遍为中低档,但是我们需要研究的问题是如何能做到准确率高、耗时少.选择恰当的解法是关键,那么含绝对值不等式的问题有哪些解法呢?选择何种解法最为有利?下面让我们一起来探讨这个问题.首先请用心体会以下的解法比较:

(2014年高考广东理科数学第9题)不等式│x-1│+

│x+2│ ≥5的解集为 .

【分析】含绝对值不等式的解法一般有三种,分别是零点区域法、数轴法和图像法.

⑴零点区域法(分类讨论思想):令x-1=0及x+2=0,得x1=1,x2=-2. x1,x2把实数轴分成三个区域:x<-2,-2≤x≤1,x>1.

①当x>1时,原不等式可去掉绝对值化为x-1+x+2≥5,解得:x≥2,考虑x>1时得x≥2.

②同理当-2≤x≤1时,原不等式可去掉绝对值化为1-x+x+2≥5,得3≥5,无解.

③当x≤-2时,原不等式可去掉绝对值化为1-x-x-2≥5,解得:x≤-3,考虑x<-2时得x<-3.

综合①②③得x∈(-∞,-3]∪[2,+∞).

⑵数轴法:从几何意义方面去考虑.│x-1│的几何意义是表示x与1的距离,│x+2│的几何意义是表示x与-2的距离,原不等式的几何意义是求x与1的距离及与-2的距离之和大于等于5,观察数轴:

当x位于-2与1之间时,x与1的距离及与-2的距离之和为3,即│x-1│+│x+2│=3;当x在1的右边时,取x=2,有x与1的距离及与-2的距离之和为5,即│x-1│+│x+2│=5,因此当x≥2时,有│x-1│+│x+2│≥5.同理,当x在-2的左边时,取x=-3,有x与1的距离及与-2的距离之和为5,即│x-1│+│x+2│=5,因此当x≤-3时,有│x-1│+│x+2│≥5. 综合以上得x∈(-∞,-3]∪[2,+∞).

⑶图像法:令f(x)=│x-1│+│x+2│=2x+1,x>1

3,-2≤x≤1

-2x-1,x<-2画出其函数图像如下:

由图像可得,当x≥2或x≤-3时,有f(x)≥5,即│x-1│+│x+2│≥5.

【点评】比较以上三种解法,零点区域法的应用范围是最广的,蕴含了非常重要的分类讨论的思想;而数轴法的解题速度是最快的,但应用范围较窄;而图像法则是运用了数形结合的思想.为了更深刻地体会以上三种解法的特点,再看以下这道题:

(2014年高考重庆理科数学第16题)若不等式│2x-1│+│x+2│≥a2+a+2对任意实数x恒成立,则实数a的取值范围是____________.

【分析】本题综合考查绝对值不等式及一元二次不等式的知识.令f(x)=│2x-1│+│x+2│,观察│2x-1│+│x+2│的特点得出,不适合用数轴法,而零点区域法和图像法均可以.下面比较一下这两种解法:

零点区域法:令2x-1=0及x+2=0,得x1=,x2=-2.

x1,x2把实数轴分成三个区域:x<-2,-2≤x≤,x>.

①当x>时,原不等式可去掉绝对值化为f(x)=3x+1,得f(x)>.

②同理当-2≤x≤时,原不等式可去掉绝对值化为f(x)=-x+3,得f(x)≥.

③当x<-2时,原不等式可去掉绝对值化为f(x)=-3x-1,得f(x)>5.

综上得:│2x-1│+│x+2│≥,因此有a2+a+2≤,

整理得:(2a-1)(a+1)≤0,

解得:-1≤a≤.

图像法:f(x)=│2x-1│+│x+2│=3x+1,x>

-x+3,-2≤x≤

-3x-1,x<-2画

出其函数图像如下:

由图像可得:│2x-1│+│x+2│≥,因此有a2+a+2≤,整理得:(2a-1)(a+1)≤0,解得-1≤a≤.

【点评】1. 本题不适合用数轴法,因为两个绝对值里x前面的系数不相同;2.对比零点区域法和图像法,由于本题去绝对值后各段均为一次函数,图像较简单,因此图像法略胜一筹.

【巩固练习】(2014年高考江西理科数学第11题)(不等式选做题)对任意x,y∈R,│x-1│+│x│+│y-1│+ │y+1│的最小值为( )

A. 1 B. 2 C. 3 D. 4

【提示】令f(x)=│x-1│+│x│,g(y)=│y-1│+│y+1│,分别求出f(x),g(y)的最小值后加起来即可.同学们想一想,动手做一做,本题用哪种方法最快?

【总结】1. 若每一个绝对值里前面x的系数都可化为1的话,则用数轴法是最方便的.

2. 在不能用数轴法的情况下,若能画出函数图像,一般来说图像法比零点区域法略胜一筹.

3. 零点区域法应用范围较广,可以解决难度较大的问题,如含参数的题目.

(作者单位:佛山市顺德区乐从中学)

责任编校 徐国坚endprint

猜你喜欢
同理数轴理科
同理不同径的透镜光路
培养孩子,从“同理心”开始
培养孩子,从“同理心”开始
和理科男谈恋爱也太“有趣”啦
文科不懂理科的伤悲
数轴的作用
班主任应该给学生一颗同理心
2017年天津卷理科第19题的多种解法
巧用数轴定解集
“咬住”解集,“握紧”数轴,“破解”参数