邓春源
(华南师范大学数学科学学院,广州 510631)
(ii) 存在单位算子I的预解集{E():σ(A)}和可逆算子S使得
由引理1可知,如果P3=P,则σ(P)⊆{0,1,-1}.如果σ(P)={0,1,-1},则存在可逆算子S使得SPS-1=I1⨁-I2⨁0.特别地,如果σ(P)={0,1},则三次幂等退化成幂等P2=P,且有对角矩阵表示SPS-1=I1⨁0;如果σ(P)={1,-1},则三次幂等退化成对合P2=I,且有对角矩阵表示SPS-1=I1⨁-I2. 也就是说,三次幂等向幂等和对合的退化是通过谱点的减少来实现的.
下面给出本文的主要结论.
(1)
其中,k=0,1,2,…,8.
幂等算子Fi(i=1,…,27)的定义如下:
F27=(I-P2)(I-Q2)(I-R2).
(2)
本文得到如下定理,其表示简洁,有效地涵盖、推广了一些已有的结论.
(3)
则以下结论成立:
证明由式(2)的定义,易得
TPT-1=[I1I2I3I4I5I6I7I8I9][-I10-I11-I12-I13-I14-I15-I16-I17-I18]
(4)
特别要注意的是,如果式(2)中的某个Fi=0,则相应的对角元Ii和系数αi,βi,γi将自动消失,此时式(4)中的对角算子阶数将小于27.比如说,如果P,Q,R退化成P2=I,Q2=I,R2=I,则Fi=0(i=3,6,7,8,9,12,15,16,…,27).相应的Ii和系数αi,βi,γi将不会出现,TPT-1,TQT-1,TRT-1将自动约化为至多8×8对角算子矩阵:
TPT-1=I1I2I4I5-I10-I11-I13-I14,
TQT-1=I1I2-I4-I5I10I11-I13-I14,
TRT-1=I1-I2I4-I5I10-I11I13-I14.
(5)
基于上述构造,由式(4)知,存在可逆算子T使得
(6)
注意到α27=β27=γ27=0.由引理1知,Ψ是三次幂等的充要条件是:当Fi≠0时,aαi+bβi+cγi=1,或-1,或0.类似地有结论(b)和(c).证毕.
下面给出一个实例(文献[3]中的定理3.1)具体解释定理1的应用.
证明在定理1中,取R=0.由式(2)知,非零Fi(i=1,…,27)只剩下F3=PQ,F9=P(I-Q),F21=(I-P)Q和F27=(I-P)(I-Q).从而式(4)中的TPT-1,TQT-1和式(6)中的Ψ分别退化成TPT-1=I3I900,TQT-1=I30I210和
TΨT-1=T(aP+bQ)T-1=(a+b)I3aI9bI210.
(1)若F3=PQ=0,项(a+b)I3将不会出现,从而a=1,b=1.
(2)若F21=(I-P)Q=0,项bI21将不会出现,从而a=1,b=-1.
(3)若F9=P(I-Q)=0,项aI9将不会出现,从而a=-1,b=1.
文献[1]的定理2.2和定理2.3给出了问题(a)和问题(b)所有可能情况,我们这里给出一种简洁的证明,定理1的一个特殊情况是P2=I,Q2=I和R2=I(问题(a)),此时式(4)中的TPT-1,TQT-1和TRT-1退化为式(5),并且
T(aP+bQ+cR)T-1=(a+b+c)I1
(a+b-c)I2(a-b+c)I4(a-b-c)I5
(-a+b+c)I10(-a+b-c)I11
(-a-b+c)I13(-a-b-c)I14.
(7)
则aP+bQ+cR是三次幂等的充要条件是式(7)中的系数只能是1,-1和0. 容易验证文献[1]的定理2.2中的条件(a)~(f)满足上述条件.定理的另外一个特殊情况是P2=I,Q2=I和R3=R(问题(b)),此时式(2)中的非零元是Fi≠0(i=1,…,6,10,…,15).同样可验证aP+bQ+cR是三次幂等的充要条件是文献[1]的定理2.3中(a′)~(o′)成立.
如果P2=P,Q2=Q和R2=R,此时式(2)中的非零元Fi≠0(i=1,3,7,9,19,21,25,27),因此TPT-1,TQT-1和TRT-1退化为
TPT-1=I1I3I7I90000,
TQT-1=I1I300I19I2100,
TRT-1=I10I70I190I250.
(8)
注意到
PQ=P⟺F7=0,F9=0;
PR=P⟺F3=0,F9=0;
QR=R⟺F7=0,F25=0.
(9)
式(6)中的表示退化为:
T(aP+bQ+cR)T-1=(a+b+c)I1(a+b)I3
(a+c)I7aI9(b+c)I19bI21cI250.
(10)
文献[3]的定理3.2证明了如果a=b=1,c=-1,PQ=P,PR=P,QR=R(由式(9)知这些条件等价于Fi=0(i=3,7,9,25)),那么Ψ是幂等.然而,在式(10)中的表示显示,若a=b=1,c=-1,Ψ是幂等的充要条件是Fi=0(i=3,25),即PQ(I-R)=0,(I-P)(I-Q)R=0.所以文献[4]中的条件PQ=P是多余的.
更进一步,如果式(10)中的R=0,则Fi=0,Ii(i=1,7,19,25)也不再出现,T(aP+bQ)T-1进一步退化为
T(aP+bQ)T-1=(a+b)I3aI9bI210.
从而aP+bQ是三次幂等的充要条件是所有系数a+b,a,b只能取0,1,-1.
线性组合的保幂等性、三次幂等性和对合性近年来被一些学者所研究[4-8].该问题对于正规变量的二次型分布问题的研究起着重要的作用.对于任意交换n次幂等也有类似的结论.特别值得提出的是,定理1涵盖了如下的一些结论.
(1)由文献[9]有:P=P3,Q=Q3,R=0时,使Ψ是三次幂等;
(2)由文献[10]有:P=P2,Q=Q2,R=0时,使Ψ是三次幂等;
(3)由文献[11]的定理1和文献[3]的定理3.2,有:P=P2,Q=Q2,R=R2时,使Ψ是幂等;
(4)由文献[12]的定理4,有:P=P+,Q=Q+,R=0时,使Ψ广义对和算子;
(5)由文献[13]的定理2.2,有:P=P3,Q=Q3,R=0时,使Ψ是幂等;
(6)由文献[14]的定理2.1和定理2.2,有:P2=I,Q2=I,R=R3时,使Ψ是幂等或三次幂等;
(7)由文献[14]的定理2.3,有:P=P3,Q=Q3,R=0时,使Ψ是对合算子;
(8)由文献[14]的定理2.5,有:P=P2,Q=Q2,R=0时,使Ψ是对合算子;
(9)由文献[1]的定理2.2,有:P2=I,Q2=I,R2=I时,使Ψ是三次幂等;
(10)由文献[1]的定理2.3,有:P2=I,Q2=I,R=R3时,使Ψ是三次幂等.
参考文献:
[1] Xu C,Xu R. Tripotency of a linear combination of two involutory matrices and a tripotent matrix that mutually commute[J]. Linear Algebra and Its Applications,2012,437: 2091-2109.
[2] Deng C,Li Q,Du H. Generalized n-idempotents and hyper-generalized n-idempotents[J]. Northeastern Mathematical Journal,2006,22: 387-394.
[3] Ozdemir H,Ozban A Y. On idempotency of linear combinations of idempotent matrices[J].Applied Mathematics and Computation,2004,159: 439-448.
[4] Baksal J K,Baksal O M.Idempotency of linear combinations of two idempotent matrices[J]. Linear Algebra and Its Applications,2000,321: 3-7.
[5] Baksal J K,Baksal O M. On linear combinations of generalized projectors[J]. Linear Algebra and Its Applications,2004,388: 17-24.
[6] Baksal J K,Baksal O M,Styan G P H. Idempotency of linear combinations of an idempotent matrix and a tripotentmatrix[J]. Linear Algebra and Its Applications,2002,354: 21-34.
[7] Baksal O M. Idempotency of linear combinations of three idempotent matrices,two of which are disjoint[J]. Linear Algebra and Its Applications,2004,388: 67-78.
[8] Tian Y. Two universal similarity factorization equalities for commutative involutory and idempotent matrices and their applications[J]. Linear and Multilinear Algebra,2011,59: 129 -144.
[9] Baksal J K,Baksal O M,Ozdemir H. A note on linear combinations of commuting tripotent matrices[J].Linear Algebra and Its Applications,2004,388: 45-51.
[10] Baksal J K,Baksal O M. When is a linear combination of two idempotent matrices the group involutory matrix?[J].Linear and Multilinear Algebra,2006,54: 429-435.
[11] Baksalary O M,Beinitez J. Idempotency of linear combinations of three idempotent matrices,two of which are commuting[J]. Linear Algebra and Its Applications,2007,424: 320-337.
[12] Liu X, Wu L, Benitez J. On linear combinations of generalized involutivematrices[J]. Linear and Multilinear Algebra,2011,59: 1221-1236.
[13] Ozdemir H,Sarduvan M,Ozban A Y,et al. On idempotency and tripotency of linear combinations of two commuting tripotentmatrices[J].Applied Mathematics and Computation,2009,207:197-201.
[14] Sarduvan M,Ozdemir H. On linear combinations of two tripotent,idempotent,and involutive matrices[J].Applied Mathematics and Computation,2008,200: 401-406.