王汉封,邹 超,张运平
(1.中南大学 土木工程学院,湖南 长沙 410075;2.高速铁路建造技术国家工程实验室,湖南 长沙 410075)
车辆的气动阻力近似与其行驶速度的平方成正比.当时速为90km时,发动机功率的80%左右将用于克服气动阻力[1].通常可认为车辆气动阻力是由压差阻力与摩擦阻力两部分构成,前者在气动阻力中占绝大部分[2].为提高燃油经济性,围绕车辆气动阻力的主、被动控制方法已开展了广泛的研究,如导流板[2-5]、漩涡发生器[6-7]、微射流[8-10]和尾部附加隔板[2,11]等.
实际车辆的外形复杂,不利于相关研究的对比.Ahmed模型[12]是目前研究最广泛的类车体模型之一.该模型头部由4个1/4圆柱面过渡,其尾部倾角α可根据实际情况而选择.研究表明,Ahmed类车体尾流及其气动力特性与尾部倾角α有密切联系[12-13].依据模型尾部斜面上的流动特性可分为3个典型状态,当α<12.5°时,流动在尾部斜面上不会发生分离,此时尾流中会形成一对旋向相反的拖曳涡;当12.5°<α<30°时,流动在斜面上会发生分离与再附着,并形成分离泡,此时在模型尾流中仍会出现拖曳涡,但其强度将明显大于第1种情况,且此时对应的阻力系数Cd显著增大;而在α>30°时,流动在斜面上边沿发生分离且无再附着发生,尾流中拖曳涡显著减弱,模型上的压力分布变得非常均匀,Cd显著减小.由此可知,斜面上是否出现分离泡、以及拖曳涡强度与模型气动阻力有密切的联系,拖曳涡强度越大对应的模型气动阻力也较大[6,12].
对于30°倾角Ahmed模型,斜面两侧导流板的减阻效果最为显著,最高可达17.7%[3].而对于尾部流动状态完全不同的25°倾角Ahmed模型,不同位置导流板对气动阻力的影响仍缺乏系统的研究.依据文献[3]中所提出的2种减阻效果较好的导流板布置方式,本文通过风洞实验系统研究了布置于斜面两侧和斜面上边缘的不同宽度的导流板对25°倾角Ahmed模型尾流与气动力的控制效果.实验运用压力扫描阀、眼镜蛇探针与表面油膜流动显示等方法,比较了不同工况下模型气动阻力、尾部压力分布以及尾流场的变化规律,揭示了减阻机理.
本试验在中南大学高速铁路建造技术国家工程实验室的风洞高速试验段内完成.该风洞为回流式风洞,具有低速与高速两个试验段,其中低速试验段宽12m,高3.5m,长18m,风速范围为0~18m/s,湍流度小于2%;高速试验段宽3m,高3m,长15 m,风速范围为5~90m/s,湍流度小于0.5%.试验装置如图1(a)所示.试验中Ahmed模型倾角为25°,缩尺比为1∶2,对应的长(l)、宽(w)、高(h)分别为522,194.5和144mm.模型安装在一个距风洞底面约500mm的水平板上,避免了风洞壁面边界层的影响.为防止流动分离,水平板前边缘加工成光滑的椭圆形.模型与水平板间隙为25mm,距水平板前边缘约550mm.可以估算模型处平板边界层厚度约为13.5mm,即试验中模型完全处于均匀来流中.本试验装置与文献[3,4,6,7]中所述的实验装置类似.坐标原点定义在水平板上模型尾部中点所对应的位置上,流动方向为x,侧向为y,高度方向为z.试验中自由来流风速为U∞=25m/s,对应的基于模型长度的雷诺数为8.7×105.模型所造成的风洞阻塞率约为0.4%,其影响可忽略不计.
图1 试验装置Fig.1 Experimental facility
本文研究了两类不同位置导流板对模型尾流与气动阻力的影响.对无导流板的工况Case1也进行了测量,以方便结果的对比.Case2,Case3和Case4中导流板安装在模型尾部斜面两侧,导流板宽度分别为5,10和15mm,约相当于模型长度的1%,2%和3%;Case5,Case6和Case7中导流板安装于斜面上边缘处,宽度分别为5,10和15mm,如图1(b)所示.
试验中采用眼镜蛇探针测量模型尾流中的总压与速度分布,所用探针响应频率为2.5kHz,并已成功运用于多种湍流场的测量[14-15].实验中探针采样频率为2kHz,每一测点采样时间为15s.测量分别在模型下游0.5l与l的流向截面内进行,以观察尾流中的拖曳涡结构.探针固定于计算机控制的二维移测架上在测量平面内逐点进行测量.移测架位移精度为0.02mm.考虑到Ahmed模型尾流的对称性,测量仅在y>0的范围内进行.
为研究不同工况下模型尾部压力的变化情况,运用电子压力扫描阀对模型尾部斜面与垂面上压力分布进行了测量.压力测点的布置与文献[7,9]相同.试验中每测点扫描12 000次,以获得各点平均压力系数Cp,其定义式为,其中为各测点平均压力,P∞为风洞静压力,ρ为空气密度.本文中上横线“ˉ”表示时间平均量.
试验还采用了表面油膜法对模型尾部斜面上的流动分离情况进行了研究.用二甲基硅油、煤油和钛白粉按一定比例混合拌匀[16-17],并均匀地涂抹在模型尾部斜面上.在25m/s风速下,约10min,油膜可达到稳定状态.
Case4和Case7的对应结果分别与Case3和Case6非常类似,限于篇幅,它们在后续讨论中未予给出.图2给出了当x=0.5l和l时,各工况以时均流向涡量为背景的流线图.本文中上标“*”表示用U∞与l进行无量纲化.由图2可知,各工况模型尾流中均存在一对规则的流向拖曳涡(y<0没有显示),并总是伴随着尾流中心线附近的强烈下扫流,这与文献[3,4,6,18]等报道的结果是一致的.
在x=0.5l处,Case1的拖曳涡中心最大值约为13.0.对于Case2,拖曳涡强度相对于Case1无明显变化.而对于Case 3,的最大值仅为7.6,相对于Case1减弱了约41.5%,且拖曳涡的尺寸也有明显减小.而对于导流板水平布置在斜面上边缘的2种情况Case5和Case6,最大值分别为7.5和7.4,相对于Case1分别减弱了42.3%和43.1%.如图2所示各工况的流线图也可反映拖曳涡的结构与强度.对于Case1和Case2,流线在拖曳涡范围内存在强烈的螺旋结构;而在Case3,Case5和Case6中,拖曳涡中心附近流线的螺旋结构相对较弱.与x=0.5l的情况类似,在x=l截面内,Case1与Case2的拖曳涡强度基本相同,而Case3,Case5和Case6的对应值则明显较小.5种工况在x=l截面内的最大值分别是0.5l截面内对应值的61%,66%,95%,55%和54%,这说明Case3中拖曳涡衰减速率最慢,而Case5与Case6的衰减速率相对较快.从图2还可看出,Case1与Case2对应的拖曳涡中心位置也基本相同,而Case3,Case5和Case6的涡团中心更靠近尾流中心线,这表明后3种工况下扫流向外侧排开拖曳涡的作用相对较弱.
为定量比较尾流中下扫流的变化规律,图3给出了x=0.5l和l截面内的z方向时均速度的分布.各工况拖曳涡中心位置在图3中用“×”标出,以方便对比.由图3可知,在各工况下,拖曳涡中心内侧均存在着明显的下扫流,即<0.Case1和Case2对应的定性与定量上都非常类似,而Case3相对于Case1也仅略有减小,这表明斜面两侧导流板对下扫流的影响非常有限.相对于Case1,Case5和Case6中下扫流的强度和其影响范围都明显减小了,这与图2中拖曳涡的变化规律是一致的.总体来看,模型尾部的水平导流板对拖曳涡和下扫流的抑制作用更为显著.
图3 x=0.5l和x=l截面内的时均z方向速度Fig.3 Time-averaged velocity in z direction in the streamwise planes at x=0.5l and l
图4给出了各工况拖曳涡中心处y方向速度v的能谱.Case1的能谱Ev存在显著的峰值,其对应的基于l和U∞的斯托罗哈数St=1.55,与文献[13]的结果非常吻合.这表明Case1中拖曳涡强度和周期性均较显著.Case2中,尽管能谱峰值略有减小,但其St数与Case1相同.与前2种工况不同,Case3,Case5和Case6的能谱中已没有明显峰值出现,表明这些工况中拖曳涡已无显著的周期性.在x=l截面内,Ev所表现的规律与x=0.5l截面内完全一致.
图4 拖曳涡中心处速度v的能谱Fig.4 Power spectra density function of vat tailing vortex center
图5给出用表面油膜法获得的模型尾部斜面上的流动结构.由于模型尾流的对称性,图中仅给出了表面油膜流动显示的右半部分,而在左半部分给出了相应的流动示意图(Case6大部分区域流动结构已不明显,故未给出).Case1,Case2和Case3中流动分离并非发生在斜面上边缘,而是上边缘略下游的实线所示位置上,如图5所示.Case1中,上边缘附近的分离流在斜面上发生再附,并在斜面上形成一个D形分离泡,如图5中流动分离线与虚线所围成范围,这与文献[9,12,19,20]中的结果是完全一致的.Case2中,尾部斜面上的流动结构没有明显改变,仍可清晰地观察到D形流动分离区.Case3和Case1相比,D形分离区仍然存在,但略有减小.对于Case5,斜面上流动结构相对于Case1发生了显著的变化.在水平导流板的作用下,斜面上边缘附近的流动分离线消失了,且分离流在斜面上不会发生再附,因而斜面上不再出现封闭的分离泡.Case5所对应的流动状态,非常类似于文献[13,16,21]中所给出的30°或35°倾角Ahmed模型的尾流结构.随着水平导流板的宽度增加到10mm,Case6中斜面两侧分离流的影响也基本消失,除斜面左右两个角部区外,整个斜面基本上都处于分离区内,斜面上流动较为均匀.
图5 模型尾部斜面上流动显示结果Fig.5 Surface flow pattern on the slant face
综合图2~图5可知,对于斜面两侧导流板的情况,其尾流特性与Case1是类似的.随着导流板宽度的增加,斜面上D形分离泡逐渐减小,尾流中拖曳涡强度有所减弱.而斜面上边缘的水平导流板,可破坏斜面上的D形分离泡,并能够更为显著地抑制尾流拖曳涡强度,其作用类似于增大了25°Ahmed模型的尾部倾角.
2.2.1 气动阻力
定义一个包括模型在内的控制体积(如图6所示)[22],并将动量守恒方程应用于该控制体积,可以获得模型气动阻力的精确表达式[4].当控制体足够大时,可认为控制体侧面与顶面上没有动量输运.此外,雷诺应力、气体粘性力等对气动阻力的贡献比其他项小一个数量级以上,通常也可忽略[4,22].模型气动阻力表达式可简化为:
式中:Pi0为来流总压;Pi为控制体积出口截面上各点总压;分别为出口截面上3个方向速度的时均值;S为控制体的出口面积.式(1)右侧三项分别表示流向速度损失、侧向速度变化以及总压损失对气动阻力的贡献.已有文献[4,22,23]成功运用式(1)获得了类车体的气动阻力,本文也将采用此方法估算不同工况下模型气动阻力.
表1给出了基于x=0.5l和l截面测量结果,依据式(1)估算的模型气动阻力.可以看出,由上述两个截面测量数据所得到的气动阻力是非常接近的.对比式(1)右侧三项对气动阻力的贡献可发现,尾流中的总压损失占气动阻力的绝大部分,而流向速度损失与侧向速度变化对阻力的贡献则相对较小.Case1中模型阻力系数Cd=0.432,与文献[19,24]的结果非常接近,这也验证了本试验结果的可靠性.由表1可知,Case2中Cd=0.441,与Case1非常接近,相对于Case1略微增大约2.1%.这一结果与3.1节所述流场变化规律是吻合的.Case3中Cd=0.415,Case4中Cd=0.399,相对于Case1的减阻率分别为3.9%和7.6%.而斜面上边缘水平导流板工况Case5,Case6和Case7,对应的减阻率可达10.9%,11.6%和11.8%,减阻效果十分显著,明显优于斜面两侧导流板各工况.图7给出了减阻率随导流板宽度的变化情况.对于水平导流板,减阻率随导流板宽度的增加变化很小;而对于斜面两侧导流板,减阻率随着导流板宽度的增加而逐渐增大,但始终低于水平导流板的减阻率.结合3.1节中流场测量结果可知,Cd的减小与尾流中拖曳涡强度的减弱是相关的.总体来看,斜面上边缘导流板对尾流拖曳涡与气动阻力的抑制作用明显强于斜面两侧导流板,这与30°倾角Ahmed模型的对应规律[3]是截然不同的.
图6 以动量守恒法计算模型气动阻力的控制体积[22]Fig.6 Control volume for drag estimation using momentum conservation[22]
表1 由式(1)计算的气动阻力Tab.1 Aerodynamic drag estimated based on Eq(1)
图7 各工况的减阻率Fig.7 Drag reduction rate
2.2.2 尾部压力分布
图8给出了5种工况中模型尾部斜面与垂面上的压力分布.总的来看,尾部垂面压力分布受导流板的影响较小,压力系数Cp均为-0.25~-0.35.然而,尾部斜面的压力分布与导流板位置及导流板宽度密切相关.Case1中斜面的上边缘与右边缘附近均出现了较强的负压,与文献[7,9]的测量结果是一致的.这说明Case1中,斜面上边缘与侧边缘均存在较强的流动分离.Case2中斜面上压力分布无明显变化,仅上边缘附近的负压极值略有增大.这与表1所示Case2中气动阻力的变化规律是吻合的.Case3的斜面压力分布与前2种工况截然不同,两侧与上边缘附近的负压极值明显减小,Cp的极小值为-0.5左右,仅相当于Case1对应值的一半.而对于水平导流板的工况Case5和Case6,其上边缘与侧边缘附近的压力极值消失,整个斜面的压力分布变得非常均匀,且斜面上的负压明显减弱了.这表明Case5和Case6中模型尾部斜面上边缘与侧边缘附近的流动分离被显著削弱.Case4和Case7的压力分布情况分别与Case3和Case6非常类似,图8中未给出.综上所述,当导流板宽度分别为10和15mm时,无论是布置在斜面两侧还是水平布置在斜面上边缘处,均能起到减小模型气动阻力的作用,但水平布置在斜面边上缘处的导流板的减阻效果更优.
图8 模型尾部斜面和垂面压力分布Fig.8 Pressure distributions on the slant and rear surfaces of the mode
Ahmed模型气动阻力主要由头部的正压、尾部斜面与垂面上的负压、以及其他各表面的摩擦阻力构成,其中尾部斜面和垂面上的负压占据了总气动阻力的绝大部分[2].对于倾角为25°的 Ahmed模型,当雷诺数为7.0×105时,尾部斜面和垂面负压对总气动阻力的贡献约为80%[25].将斜面与垂面的压力投影至x方向并积分,可获得各面对应的阻力系数,如表2所示.对于Case1,斜面与垂面阻力系数分别为0.187和0.158,可估算此时对应的Cd约为0.431,这与表1所示结果非常吻合.对比表2中数据可知,Case2中,尾部垂面阻力系数基本没有变化.造成Case2中Cd增大的原因主要是斜面阻力系数增大了,因为如图8所示斜面上边缘附近的负压相对于Case1有所增强.对于Case3~Case7,其尾部垂面阻力系数不仅没有减小,相对于Case1反而略有增大,由此可知,各工况减阻效果主要来源于斜面上负压的减弱.即如图8所示,导流板显著抑制了斜面上边缘与侧边缘附近强烈的流动分离,并削弱了斜面上负压.
表2 尾部斜面与垂面阻力系数Tab.2 Drag coefficients of slant and rear surfaces
通过风洞试验研究了25°倾角Ahmed类车体尾部斜面两侧和斜面上边缘处不同宽度导流板对模型尾流与气动力的影响规律.导流板宽度分别为5,10和15 mm,约相当于车长的1%,2%和3%.主要结论如下:
1)当模型尾部斜面两侧导流板宽为5mm时(Case2),其对拖曳涡与下扫流的影响可以忽略.斜面两侧宽分别为10,15mm导流板(Case3,Case4)和上边缘宽分别为5,10,15mm的水平导流板(Case5~Case7)均能够明显削弱尾流中拖曳涡与下扫流强度.
2)无导流板时,模型尾部斜面上边缘附近分离流会发生再附着并形成D形流动分离泡.对于斜面两侧导流板,分离泡随导流板宽度的增加而有所减小,但不会消失;而斜面上边缘导流板能够抑制斜面上的流动再附着,破坏分离泡的形成.随着上边缘导流板宽度的增加,斜面上流动变得非常均匀,类似于增大了Ahmed模型的尾部倾角.
3)基于尾流中总压与时均速度的测量结果,依据Onorato等[22]给出的方法估算气动阻力是可行的.斜面两侧布置5mm宽导流板(Case2)不仅无减阻效果,反而使气动阻力增大约2.1%.当两侧导流板宽度分别增加到10和15mm时(Case3,Case4),减阻效率分布为3.9%和7.6%.Case5~Case7的减阻效率分别可达10.9%,11.6%和11.8%,基本不随导流板宽度而变化.斜面两侧导流板的减阻效率随导流板宽度增加而逐渐增大,但始终小于水平导流板的减阻效率.
[1] 谷正气.汽车空气动力学[M].北京:人民交通出社,2005:10-15.GU Zheng-qi.Automobile aerodynamics[M].Beijing:China Communications Press,2005:10-15.
[2] 王勋年,李士伟,陈立.采用尾部隔板降低类客车体阻力的研究[J].实验流体力学,2011,25(2):58-62.WANG Xun-nian,LI Shi-wei,CHEN Li.Investigation on reducing drag of the bus-like body using tail clapboards[J].Journal of Experiments in Fluid Mechanics,2011,25(2):58-62.(In Chinese)
[3] BEAUDOIN J,AIDER J.Drag and lift reduction of a 3Dbluff body using flaps[J].Exp Fluids,2008,44:491-501.
[4] FOURRIE G,KEIRSBULCK L,LABRAGA L,etal.Bluff-body drag reduction using a deflector[J].Exp Fluids,2011,50:385-395.
[5] 吴志刚,魏琪,加藤征三,等.导流翼片的倾角和长度在降低大后壁车辆气动阻力中的应用[J].汽车工程,2003,25(6):634-637.WU Zhi-gang,WEI Qi,SEIZO Kato,etal.The effect of length and inclined angle of air deflectors on reducing drag of large bluff end vehicles[J].Automotive Engineering,2003,25(6):634-637.(In Chinese)
[6] AIDERD J,BEAUDOIN J,WESFREID J.Drag and lift reduction of a 3Dbluff body using active vortex generators[J].Exp Fluids,2010,48:771-789.
[7] PUJALS G,DEPARDON S,COSSU C.Drag reduction of a 3D bluff body using coherent streamwise streaks[J].Exp Fluids,2010,49:1085-1094.
[8] 谷正气,李学武,何忆斌.汽车减阻新方法[J].汽车工程,2008,30(5):441-443.GU Zheng-qi LI Xue-wu HE Yi-bin.A new method of reducing aerodynamic drag[J].Automotive Engineering,2008,30(5):441-443.(In Chinese)
[9] JOSEPH P,AMANDOLESE X,AIDER J L.Drag reduction on the 25°slant angle Ahmed reference body using pulsed jets[J].Exp Fluids,2011,52:1169-1185.
[10] AUBRUN S,McNally J,ALVI F,etal.Separation flow control on a generic ground vehicle using steady microjet arrays[J].Exp Fluids,2011,51:1177-1187.
[11] 张攀峰,王晋军,唐青.气动附加装置降低厢式货车后体阻力[J].实验流体力学,2009,23:12-15.ZHANG Pan-feng,WANG Jin-jun,TANG Qing.Experimental investigation on the aft-body drag reduction of the tractor-trailer truck by aerodynamic add-on device[J].Journal of Experiments in Fluid Mechanics,2009,23:12-15.(In Chinese)
[12] AHMED S R,RAMM R,FALTIN G.Some salient features of the time-averaged ground vehicle wake[C]//SAE Technical Paper Series 840300,1984.
[13] VINO G,WATKINS S,MOUSLEY P,etal.Flow structures in the near wake of Ahmed model[J].J Fluids Struct,2005,20:673-695.
[14] SCHNEIDER G,HOOPER J,MUSGROVE A,etal.Velocity and Reynolds stresses in a precessing jet flow[J].Exp Fluids,1997,22:489-495.
[15] CHEN J,HAYNES B,FLETCHER D.Cobra probe measurements of mean velocities,reynolds stresses and high-order velocity correlations in pipe flow[J].Exp Therm Fluid Sci,2000,21:206-217.
[16] CONAN B,ANTHOINE J,PLANQUART P.Experimental aerodyanmic study of a car-type bluff body[J].Exp Fluids,2011,50:1273-1284.
[17] THACKER A,AUBRUN S,LEROY A,etal.Effects of suppressing the 3Dseparation on the rear slant on the flow structures around an Ahmed body[J].J Wind Eng Ind Aerodyn,2012,107/108:237-243.
[18] 朱晖,杨志刚.类车体尾迹区流动的实验研究[J].实验流体力学,2010,24(2):24-27.ZHU Hui,YANG Zhi-gang.Experimental study on the flow field in the wake of Ahmed model[J].Journal of Experiments in Fluid Mechanics,2010,24(2):24-27.(In Chinese)
[19] GILLIERON P,CHOMETON F.Modelling of stationary three-dimensional separated air flows around an Ahmed reference model[C]//3rd International Workshop on Vortex,ESAIM Proceedings.Amsterdam:Elsevier,1999,7:173-182.
[20] KRAJNOVIC S,DAVIDSON L.Flow around a simplified car,part 2:understanding the flow[J].J Fluids Eng,2005,127:919-928.
[21] GILLIERON P,KOURTA A.Aerodynamic drag control by pulsed jets on simplified car geometry[J].Exp Fluids,2013,54:1-16.
[22] ONORATO M,COSTELLI A F,GARONNE A.Drag measurement through wake analysis[C]//SAE Technical Paper Series 840302,1984.
[23] VAN-DAM C.Recent experience with different methods of drag prediction[J].Prog Aerosp Sci,1999,35(8):751-798.
[24] BRUNN A,WASSEN E,SPERBER D,etal.Active drag control for a generic car model[C]// Notes on Numerical Fluid Mechanics and Multidisciplinary Design.Berlin Heidelberg:Springer,2007:247-259.
[25] KRAJNOVIC S,BASARA B.LES of the flow around Ahmed body with active flow control[C]//Turbulence and Interactions.Berlin Heidelberg:Springer,2010:247-254.