牟立庆
数学应用题的构成要素是:具体内容,名词术语,数量关系和结构特征。这些构成要素不是孤立的,而是相互联系的,是造成学生解答应用题困难的原因。其中,处于核心地位的是数量关系。确定了数量之间的相互关系,才能得到解决方法,因此应用题教学应在理解题意的基础上,重点抓住名词术语进行分析,把握数量之间的等量关系,学生才能真正掌握解题方法。
一、培养学生分析问题、解决问题的能力
1.利用数量关系式解题。解答分数应用题,往往要抓住题中的“中心句”进行分析,从“中心句”中找出单位“1”和“相关联的两个量”,明确“相关联的两个量”之间的关系,根据分数乘法的意义写出关系式。如:在“延续生命”献爱心活动中,我校五年级学生捐款3500元,六年级捐的是五年级的2倍,六年级学生捐款多少元?这里把“五年级学生的捐款数”看作单位“1”,五年级和六年级是相关联的两个量,它们的关系是“五年级学生捐款数×倍数=六年级学生捐款数”。从关系式中很容易知道这道题怎么列式计算了。
其实较复杂的题也是一个一个简单的应用题组合而成的,只要学生学会分析,难题也会迎刃而解。平时教师可以口头训练这样的关系式,让学生熟练掌握,这样就会有意想不到的收获,能达到事半功倍的效果。而应用题是灵活多变的,,学生在数学学习中如果一味围绕书上的公式、例题转,程式化、机械性地解题,对知识缺乏透彻的掌握,对题目的数量关系不做具体分析,是不可能把应用题学好的。但对具体题目还需作具体的分析,否则就容易出错。
2.借助线段图解题。数学家华罗庚曾说:“人们对数学早就产生了干燥无味、神秘难懂的印象,成因之一便是脱离实际。”数形结合的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。数形结合思想是充分利用“形”把复杂的数量关系和抽象的数学概念变得形象、直观,能丰富学生的表象,引发联想。在分数乘除应用题教学时经常通过画线段图或面积图弄清题意,分析数量关系,拓宽解题思路,能引导学生迅速找到解决问题的方法。“线段图”直观、明了,能让学生很清楚地看出两种量的关系,谁多谁少一目了然,便于学生判断,能培养学生的判断能力。教师在教学生画图時要有耐心,学生刚接触线段图,有很多困难,先画什么,后画什么,要把哪条线段平均分成“几”份,容易混淆,教学时要让学生尝试,发现问题,教师引导纠错,使学生印象深刻。如:客货两车分别从A、B两地同时出发,相向而行,它们在离中点20千米处相遇,这时货车行了全程的四分之一。A、B两地相距多少千米?
从图中不难看出,科技书占7份,故事书占8份,它们共占15份,可先求出每份数,即1500÷15=100(元),这样就能很快算出故事书和科技书的钱数。
变换思想是将一种思维形式转变成另一种思维形式的数学思想。它具有化复杂为简单、化抽象为直观、化生疏为熟悉等作用,以沟通数学知识间的联系,是数学中常见的思想方法。尤其在分数乘除法应用题教学时经常要求学生把复杂分数应用题中的数量关系熟练地转化为简单应用题的数量关系,同样分数应用题与份数、比、按比例分配应用题也都有内在联系,可以互相转化,拓展学生解题思路。
应用题的解题方法多种多样,各有所长,各有所短,只要我们在教学中认真引导,学生一定能取得更好的成绩。学生有时解题困难,是因为不善于从整体上把握题目中的数量关系,未能把解题模式抽象成为一种思维策略。每一个学习内容都有其关键之处和难点。如果能恰到好处的把握并解决这两方面问题,学生对于这一学习内容的掌握和运用,自然也就会比较好。
二、培养学生探究分数应用题题型的能力
分数应用题的解题都是有规律可循地。根据分数应用题的特征,可以把分数应用题分为三种基本类型。一是求一个数是另一个数的几分之几,二是求一个数的几分之几是多少,三是已知一个数的几分之几是多少,求这个数。这是第一阶段要学习的三种基本题型;第二阶段学习分数复合应用题,采用乘除混合编排方式,第三阶段学习较复杂的分数应用题和工程问题。分数应用题的基础题型是简单的分数乘法应用题,它不仅是学习分数除法应用题的前位知识,还是学习分数复合应用题的基础。这样编排体现了由简单到复杂,由易到难的知识结构,便于学生构建认知结构。
解题关键要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来分析解答的,所以要把这个关系式吃透,从中总结出“一找,二看,三判断”的解答步骤。找:找单位“1”;看:看单位“1”是已知还是未知;判断:已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学能有相当大的帮助。
教学到教复杂的分数应用题题型时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1”和“比一个数多(少)几分之几”的两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分率=对应量,所以单位“1”=对应量÷对应分率。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分率。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。
总之,分数应用题的学习的确有难度,但并非难以理解和接受,现在的教材中多次简化了分数应用题的难度,如“工程问题”都简化到仅仅一个例题的地步,所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的内容学生学起来会变得比较轻松。