沈立军,杜杨松,王树星,李大鹏,4,葛松胜,5,王开虎
(1. 山东省煤田地质规划勘察研究院,山东泰安 271000; 2. 中国地质大学(北京),北京 100083;3. 山东省第八地质矿产勘查院,山东日照 276826; 4. 山东省地质科学研究院,山东济南 250013;5. 中国科学院地质与地球物理研究所,北京 100029; 6. 中化地质矿山总局,北京 100101)
新疆西天山智博铁矿岩浆-热液成矿作用—来自安山岩矿物学的证据
沈立军1,2,杜杨松2,王树星3,李大鹏2,4,葛松胜2,5,王开虎6
(1. 山东省煤田地质规划勘察研究院,山东泰安 271000; 2. 中国地质大学(北京),北京 100083;3. 山东省第八地质矿产勘查院,山东日照 276826; 4. 山东省地质科学研究院,山东济南 250013;5. 中国科学院地质与地球物理研究所,北京 100029; 6. 中化地质矿山总局,北京 100101)
本文以智博铁矿区内的安山岩为研究对象,通过详细的野外地质调查,并利用电子显微镜和电子探针,对安山岩中的主要矿物进行了系统的岩相学观察和矿物学研究。研究表明,智博安山岩中斜长石主要为Na-高钠长石,具低TiO2,高Na2O和Al2O3的特点;辉石主要为普通辉石,具高TiO2,高Al2O3的特点;角闪石主要为镁角闪石和阳起石,具低TiO2和Al2O3,高MgO的特点;副矿物磁铁矿具高TiO2,低MgO和Al2O3的特点。辉石、角闪石矿物化学特征表明,智博铁矿安山岩的母岩浆属于壳幔混源的玄武质岩浆,构造环境为火山岛弧环境。智博安山岩中单斜辉石结晶温度为1225℃左右,结晶压力约0.795GPa,结晶深度约26km。智博铁矿后期的热液作用也参与了磁铁矿成矿,对智博铁矿的成矿有一定的贡献。
安山岩 岩相学 矿物学 成岩成矿 智博铁矿
Shen Li-jun,Du Yang-song,Wang Shu-xing,Li Da-peng,Ge Song-sheng,Wang Kai-hu.Magmatic and hydrothermal mineralization of the Zhibo iron deposit in the western Tian Shan,Xinjiang:Evidence from andesite mineralogy[J].Geology and Exploration,2014,50(2):0321-0331.
智博铁矿位于新疆和静县西北约200km,是西天山阿吾拉勒成矿带中近年来新发现的大型铁矿床之一。前人对该区域进行了大量的地质研究(姜常义等,1996;王永新等,2003;刘宽厚等,2003),而本矿床由于发现时间较短,对其研究相对薄弱。田敬全等(2009)通过野外地质调查,认为智博铁矿为火山热液型铁矿床;而冯金星等(2010)通过详细的岩石地球化学研究,认为智博铁矿为岩浆(主成矿期)-热液(次成矿期)复合型矿床,并指出矿石与玄武质安山岩之间有密切联系,玄武质岩浆很可能为成矿母岩浆。前人对区域上与成矿有关的中基性火山岩做过大量的岩石地球化学研究(卢宗柳等,2006;徐国端等,2008),尤其是大哈拉军山组安山岩,并取得了一些共识,普遍认为该地层火山岩为一套钙碱性系列的火山岩建造,形成于陆缘岛弧环境(李注苍等,2006;张江苏等,2006;张学奎等,2008),其岩浆活动受控于B型俯冲作用(姜常义等,1996)。但相比之下,对该套火山岩的岩相学和矿物学研究较为欠缺,为此本文以智博铁矿区内的安山岩为研究对象,通过详细的野外地质调查、并利用电子显微镜和电子探针,对安山岩中的主要矿物进行了系统的岩相学观察和矿物学研究,以探讨安山岩的矿物化学特征、岩石成因条件以及大地构造背景,为进一步研究该矿床的成矿机制奠定良好的基础。
智博铁矿位于伊犁地块东北部的阿吾拉勒-伊什基里克晚古生代裂谷带内(图1a)。早石炭世的岩浆活动受控于B型俯冲作用,形成于大陆型岛弧的内侧,分布有大面积钙碱性火山岩套和钙碱性花岗岩(姜常义等,1996);早二叠世-晚二叠世的岩浆活动均为板内拉张作用的产物,形成于裂谷化的初期阶段,产生了大量的双峰式火山岩和A型花岗岩(张作衡等,2008;冯金星等,2010)。
受火山机构及北侧NW向区域性大断裂控制,区内构造行迹较为复杂,岩层劈理、节理发育,韧性变形复杂,但主要构造为一单斜构造,此单斜构造走向NW315°左右,倾角60°左右。矿区内出露的地层主要为下石炭统大哈拉军山组第三亚组(C1dc)火山岩和第四系冰川及其堆积物(图1b)。火山岩主要包括安山岩、玄武岩、玄武质安山岩、玄武质凝灰岩、粗面安山岩以及少量的粗面岩和英安岩,铁矿体主要赋存于安山岩中。区内晚古生代火山活动频繁,古火山机构发育,岩浆岩以华力西期中晚期为主,侵入岩岩体主要有浅肉红色的花岗闪长岩和灰色的石英闪长岩,岩脉主要为后期侵入于矿区西北部石英闪长岩中的辉绿岩脉(李小军,1994;冯金星等,2010)。
智博矿区的安山岩呈灰色、灰绿色,具交织结构(图2a)和斑状结构,块状构造。岩石由斑晶和基质组成(图2a、b)。斑晶主要有斜长石(10%~15%)、钾长石(5%~10%)、辉石(10%~15%)、角闪石(5%~10%),斜长石和钾长石(图2b)斑晶呈半自形-自形板柱状分布,单斜辉石和角闪石(图2c)斑晶呈半自形-自形板片状和粒状分布。基质主要由斜长石(15%~20%)、辉石(15%~20%)、钾长石(3%~5%)、磁铁矿(3%~5%)等组成,副矿物主要为榍石、磷灰石以及少量锆石。安山岩中偶见杏仁构造(图2b),被后期方解石充填。靠近矿体部分的安山岩蚀变较强,主要蚀变有钾长石化(图2c)、绿帘石化(图2c)、硅化、绿泥石化和阳起石化。其中和矿体相邻的安山岩钾长石化和硅化蚀变异常强烈,呈条带状分布。
磁铁矿主要赋存于智博矿区安山岩中,根据前人研究(冯金星等,2010;蒋宗胜,2012;王志华,2012)、野外及镜下观察,智博铁矿既具有岩浆成因的一些典型特征,如存在隐爆角砾状矿石,矿体与围岩接触截然,广泛发育气孔、杏仁状构造等;又存在广泛的热液蚀变与磁铁矿密切联系,因此将磁铁矿成矿期次大体上划分为两期:岩浆期与热液期。岩浆期矿石主要为致密块状矿石(图2d)、角砾状矿石(图2e)以及浸染状矿石,发育杏仁、气孔状构造,见星点状黄铁矿, 充填于磁铁矿空隙(图2f), 在矿体与围岩接触部位(图2e)磁铁矿胶结钾长石化、绿帘石化的安山岩角砾,主要矿物组合为磁铁矿-透辉石。热液期矿石主要为条带状矿石(图2g)、稀疏浸染状矿石(图2h)及网脉状矿石,磁铁矿与钾长石、绿帘石密切共生(图2i),见团块状、条带状黄铁矿,还发育石英脉和碳酸岩脉切穿早期矿物,石英脉中可见黄铁矿及黄铜矿。
图1 智博铁矿矿区地质图(据新疆地质矿产勘查开发局第三地质大队,2011)Fig.1 Geological sketch map of the Zhibo iron deposit in Xinjiang(modified from No.3 Geological Team,Xinjiang Geology and Mineral Resources Exploration and Development Bureau,2011) 1-大哈拉军山组第三亚组安山岩;2-石英闪长岩;3-花岗闪长岩;4-第四系冲积、坡积物;5-第四系冰积物;6-第四系冰川;7-磁铁矿体;8-断层;9-地质界线1-Dahalajunshan Fm.3rd Subformation andesite;2-quartz diorite;3-granodiorite;4-Quaternary alluvium and diluvium;5-Quaternary glacial debris;6-Quaternary glacier;7-magnetite;8-fault;9-geological boundary
矿物电子探针分析测试在中国地质大学(北京)科学研究院电子探针实验室完成。仪器型号为EPMA-1600,工作条件是:加速电压15kV,束流7×10-8A,束斑直径1μm,修正方法为ZAF,测试中铁离子全部视为三价铁,依据林文蔚(1994)的分配方法原理对Fe2+和Fe3+进行调整,各矿物的矿物化学数据列于表1~表4。
4.1 斜长石
安山岩中斜长石含量约占45%左右,呈灰白色或暗灰色,半自形-自形板柱状结构,正低突起,干涉色一级灰白,斜消光,可见聚片双晶,不具环带,斑晶斜长石粒度0.5~1mm,基质中粒度0.2~0.3mm。
斜长石矿物学资料(表1)显示,其具低TiO2,高Na2O和Al2O3的特点。其中SiO2(65.24%~68.52%), TiO2(0.00%~0.14%), Al2O3(19.38%~20.12%),Fe2O3T(0.00%~0.62%),MnO(0.00%~0.05%),MgO(0.00%~0.07%),CaO(0.45%~0.84%),Na2O(12.11%~12.85%),K2O(0.00%~0.15%)。根据Smith & Brown(1974)的长石分类图解(图3)可知,本区斜长石全部落入Na-高Na长石区,Na2O含量较高,Ab达到95%以上,洛多奇尼柯夫(1956)曾指出,岩浆岩中的钠长石大多情况下是浅岩浆矿物,而火成岩中钠长石往往是发生钠长石化(去钙长石化)的结果,这说明安山岩中的斜长石发生了钠长石化。斜长石中TiO2较低(<0.15%),Keer(1998)通过实验认为,TiO2的含量既与熔体的TiO2的含量有关又与熔体分异程度有关,随着熔体中Fe-Ti氧化物分异程度的增加,Ti的含量也将随之降低,在分异晚期Ti的含量下降。这指示了安山岩中斜长石可能是在岩浆分异晚期形成的,但也可能是由于蚀变作用导致了长石中TiO2含量的降低。
图2 安山岩与磁铁矿样品照片Fig.2 Photographs of andesite and magnetite ores a-安山岩中斜长石(Pl)定向排列成交织结构,正交偏光;b-安山岩中钾长石(Kf)斑晶,见杏仁状构造,正交偏光;c-安山岩中绿帘石(Ep)化、钾长石(Kf)化蚀变,单偏光;d-致密块状磁铁矿,发育星点状黄铁矿(Py);e-角砾状磁铁矿石,角砾为蚀变安山岩;f-黄铁矿(Py)充填于磁铁矿(Mt)空隙,反射光;g-浸染状磁铁矿,发育绿帘石(Ep)化、钾长石(Kf)化;h-钾长石(Kf)与绿帘石(Ep)中磁铁矿;i-半自形-自形磁铁矿(Mt),单偏光a-plagioclase (Pl) in andesite displaying pilotaxitictexture,cross-polarized light;b-K-feldspar (Kf) phanerocryst in andesite,amygdaloidal structure,cross-polarized light;c-epidotization (Ep) and kfeldsparization (Kf) in andesite,plan-polarized light;d-massive magnetite ore associated with scattered pyrite (Py);e-brecciated magnetite ore associated with altered andesite brecciate;f-pyrite (Py) filling lattice voids of magnetite,reflective light;g-disseminated magnetite ore associated with epidotization (Ep) and kfeldsparization (Kf);h-magnetite associated with epidote (Ep) and K-feldspar (Kf);i-hypidiomorphic-automorphic magnetite (Mt),reflective light
4.2 辉石
安山岩中的辉石含量约占10%左右,呈浅褐色,它形-半自形,不规则粒状,多色性不明显,正高突起,干涉色二级蓝绿,节理发育,粒度0.2~0.4mm。
矿物学资料显示(表2),其具高TiO2、高Al2O3的特点。其中SiO2(47.89%~49.07%),TiO2(1.34%~1.92%),Al2O3(2.81%~4.70%),Fe2O3T(11.84%~13.47%),MnO(0.08%~0.58%),MgO(11.69%~12.65%),CaO(18.16%~20.24%),Na2O(0.52%~0.97%),K2O(0.00%~0.01%)。辉石Wo-En-Fs分类图解(图4)显示,安山岩中的辉石为普通辉石和少量的次透辉石。Kushiro(1960)和Le bas(1962)研究表明,单斜辉石的成分取决于母岩浆的成分与结晶环境,火成岩中的Si与Al有互不相容的作用,其Si和Al可以作为确定母岩浆类型的标型元素(孙传敏,1994),辉石Si-AlⅣ图(图5)显示,大部分单斜辉石落入拉斑玄武岩区与不含似长石碱性岩区交汇区域。
图3 智博安山岩中长石分类图 (据Smith & Brown,1974)Fig.3 Classification of feldspars in the Zhibo andesite (after Smith & brown,1974)
4.3 角闪石
安山岩中的角闪石含量约25%左右,呈浅绿色,半自形-自形,板柱状,多色性强,正中突起,干涉色二级蓝,节理不发育,偶见闪石式节理,粒度0.1~0.2mm。
表1 智博铁矿安山岩中斜长石的电子探针分析数据(%)Table 1 Electron microprobe analyses of plagioclase in andesite from the Zhibo iron deposit(%)
测试时间:2012年2月;测试单位:中国地质大学(北京)。
图4 智博安山岩辉石分类图(据Morimoto et al.,1988)Fig.4 Classification of pyroxene in the Zhibo andesite (after Morimoto et al.,1988)
矿物学资料显示(表3),角闪石具有低TiO2和Al2O3、高MgO,的特点。其中SiO2(49.67%~53.84%),TiO2(0.00%~0.24%),Al2O3(0.81%~4.92%),TFe2O3(14.42%~17.42%),MnO(0.05%~1.48%),MgO(12.98%~15.02%),CaO(10.99%~11.59%),Na2O(0.22%~1.15%),K2O(0.00%~0.54%),Mg/(Mg+Fe)为0.64~0.76。根据角闪石分类图解(图6)中,本区安山岩中角闪石为镁角闪石和阳起石,镁角闪石有变化到阳起石的趋势,说明受到了后期热液的蚀变;依据Giret (1980) 划分的岩浆成因的角闪石和次生角闪石,阳起石的Ca+ AlⅣ= 1.90~1.95,小于2.5,属次生角闪石,镁角闪石Ca+AlⅣ=2.21~2.44,略小于2.5,说明镁角闪石也受到了后期热液的一定影响;在角闪石来源图解(图7)中,阳起石落入壳源区,镁角闪石落入壳幔混源区。但鉴于阳起石为蚀变矿物属次生角闪石,故其母岩浆应与镁角闪石投点结果一致,为壳幔混源型。
图5 智博安山岩辉石Si-AlⅣ图(据Kushiro,1960)Fig.5 Si-AlⅣ diagram of pyroxene in the Zhibo andesite (after Kushiro,1960 ) 1-拉斑玄武岩;2-不含似长石的碱性岩;3-含似长石的碱性岩1-tholeiitic basalts;2-alkaline rocks without feldspathoid;3-alkaline rocks with feldspathoid
样号SiO2TiO2Al2O3TFe2O3MnOMgOCaONa2OK2OTotalZB0748.91.372.8113.470.3611.6920.240.670.0099.5ZB0848.41.924.4613.430.3211.7419.280.520.00100.08ZB0947.891.723.9313.410.3212.2819.110.640.0099.3ZB1049.071.343.7613.110.4112.6518.530.690.0199.58ZB1148.611.704.4013.430.5812.0918.160.970.0099.94ZB1248.971.834.7011.840.0811.8919.520.690.0099.52以6个氧原子为基准计算的阳离子数样号SiAlⅣAlⅥFe3+TiFe2+MnMgCaNaKTotalWoEnFsZB071.8330.1240.0000.0850.0390.3040.0110.6530.8130.0490.0003.91145.9136.9017.19ZB081.7960.1950.0000.0270.0540.3590.0100.6500.7670.0370.0003.89543.1836.5920.24ZB091.7950.1740.0000.0940.0480.2940.0100.6860.7670.0460.0003.91443.9239.2716.81ZB101.8250.1650.0000.0590.0370.3180.0130.7010.7380.0500.0003.90742.0139.9118.07ZB111.8050.1920.0000.0740.0470.3110.0180.6690.7220.0700.0003.90942.4339.3118.25ZB121.8170.1830.0220.0000.0510.3420.0030.6580.7760.0500.0003.90143.7037.0419.27
测试时间:2012年2月;测试单位:中国地质大学(北京)。
表3 智博铁矿安山岩中角闪石的电子探针分析数据(%)Table 3 Electron microprobe analyses of amphibole in andesite from the Zhibo iron deposit(in percentage)
测试时间:2012年2月;测试单位:中国地质大学(北京);Mg#为Mg/(Mg+Fe2+)。
图6 智博安山岩角闪石分类图(据Leake et al.,1997)Fig.6 Amphibole classification of Zhibo andesite (after Leake et al.,1997)
图7 智博安山岩角闪石来源投点图(据姜常义等,1984)Fig.7 Projection diagram of the sources of amphibole in Zhibo andesite (after Jiang et al.,1984)
4.4 磁铁矿
安山岩中磁铁矿矿物的主要氧化物含量见表4,磁铁矿具高TiO2,低MgO和Al2O3的特点。FeO含量多高于理论值(31.06%),Fe2O3含量低于理论值(68.94%),其中SiO2(0.22%~0.37%),TiO2(9.67%~11.07%),Fe2O3(45.48%~61.92%),FeO(30.32%~41.14%),MnO(0.07%~0.90%)。蚀变安山岩中磁铁矿TiO2含量较低,仅为0.00%~0.02%,FeO、Fe2O3含量接近于磁铁矿理论值,分别为Fe2O3(66.57%~68.16%),FeO(31.12%~31.77%)。另外,SiO2含量为0.07%~0.59%,两种磁铁矿化学成分上的差异,可能暗示其成因的不同。
5.1 岩石成因及构造背景
单斜辉石的成分与岩浆和构造环境有密切关系,特别是Ti、Al、Na等的含量对判断岩浆系列和构造环境有良好的指示作用(Le Base, 1962; Leterrieretal.,1982;sunetal.,1991)。孙传敏(1994)研究指出火成岩中的Si与Al有互不相容的作用,其Si和Al可以作为确定母岩浆类型的标型元素。在辉石Si-AlⅣ图(图5)上大部分单斜辉石落入拉斑玄武岩区与不含似长石碱性岩区交汇区域,但在智博矿区以及整个大哈拉军山组均无不含似长石的碱性岩发育(冯金星等,2010),因此辉石Si-AlⅣ图(图5)中单斜辉石应属于拉斑玄武岩区,智博矿区安山岩的母岩浆应为玄武质岩浆。
表4 智博铁矿安山岩中磁铁矿的电子探针分析数据(%)Table 4 Electron microprobe analyses of magnetite in andesite from the Zhibo iron deposit(%)
测试时间:2012年2月;测试单位:中国地质大学(北京)。
Nisbet等(1973)对单斜辉石的成分进行了多元统计分析,建立了用F1、F2划分构造环境的判别图(图8),其中:
在图8中,部分单斜辉石在火山弧玄武岩+洋底玄武岩区域内,部分在洋底玄武岩+板块内拉斑玄武岩范围内。由于岩浆快速冷却,导致TiO2和Al2O3的富集(Leterrieretal.,1982),使F2数据偏小。若不考虑TiO2和Al2O3的富集作用的影响,单斜辉石投点应向上偏移,更倾向于火山弧玄武岩范围内。姜常义等(1995)岩石地球化学研究表明石炭纪火山岩形成于岛弧环境,朱永峰等(2005)通过详细的岩石学与岩石地球化学研究,认为大哈拉军山组火山岩形成于古南天山洋的火山岛弧。对于智博矿区火山岩,蒋宗胜等(2012)对其进行了详细的岩石地球化学研究,结合冯金星等(2010)智博矿区火山岩地球化学数据,在Th-Ta-Hf/3图解、Zr/4-Y-Nb×2图解、Nb/Th-Zr/Nb图解及Nb/Yb-Th/Yb图解中,均指示智博矿区火山岩具火山岛弧玄武岩的特点。由此看来,辉石的矿物学特征与岩石地球化学特征指示的构造背景具有一定的一致性,智博安山岩形成的构造环境应为火山岛弧环境。
图8 智博安山岩单斜辉石F1-F2图解(据Nisbet等,1973)Fig.8 F1 versus F2 diagram of clinopyroxene in Zhibo andesite (after Nisbet et al.,1973) WPT-板块内拉斑玄武岩;WPA-板块内部碱性玄武岩;VAB-火山弧玄武岩;OFB-洋底玄武岩WPT-within plate tholeiite;WPA-within plate alkali basalt;VAB-volcanic arc basin;OFB-ocean floor basalts
众所周知,高压含水情况下,玄武岩很容易结晶出角闪石或形成角闪岩,而在造岩矿物的演化过程中,角闪石出现于无水硅酸盐向含水硅酸盐转化的最初阶段,直接反映成岩作用物化条件的转变,故角闪石可作为指示成岩作用的标型矿物(陈光远等,1987)。岩石中的钙质角闪石的化学成分可以反映其母岩浆的性质(马润则等,1997,2001;肖渊甫等,1998)。姜常义等(1984)指出角闪石中TiO2和Al2O3的含量可以指示其母岩浆性质,根据其建立的TiO2-Al2O3角闪石来源图解(图7),图中显示阳起石落入壳源区,镁角闪石落入壳幔混源区。而阳起石为后期热液蚀变矿物,镁角闪石才能较为真实反映其岩浆来源,所以其母岩浆应属壳幔混源系列。
由上述矿物学资料可知,智博铁矿区安山岩的母岩浆属于壳幔混源的玄武质岩浆,构造环境为火山岛弧环境。
5.2 温压条件
斜长石中Al的含量与压力的大小有一定关系。前人研究表明,玄武岩岩浆在高压结晶时,Al易于进入单斜辉石中,故高压结晶的辉石富铝,低压结晶时Al易进入斜长石,因而低压结晶的斜长石富铝(Kushiro,1960;Thompson,1974;邱家骧,1987)。本区安山岩中斜长石中Al含量相对较高(>19.38%),表明斜长石可能为低压环境下结晶的产物。
智博安山岩中角闪石主要为阳起石和镁角闪石,矿物学数据显示它们都受到不同程度热液作用的影响,遭受热液蚀变致使成分上发生了一定的变化,不能真实反映其温压条件,故采用辉石对温压进行估算。
Thompson(1974)通过大量实验研究,建立了以单斜辉石Al含量为参数计算不同类型玄武岩中单斜辉石结晶温度和压力的公式,在此基础上,周新民(1982)总结了碱性玄武岩中单斜辉石的温压回归方程:P(0.1GPa)=-7.5382+83.1692Al,T(℃)=1056.8986+902.7978Al (Al,以6个氧原子计算阳离子数)。据此对本区玄武质安山岩中单斜辉石的结晶温压进行估算(见表5),结晶温度为1205.677~1242.404℃,平均值为1225℃,结晶压力为0.6168~0.9551GPa,平均值为0.795 GPa,对应深度为26km(按1GPa≈33.0km换算结晶深度)。
表5 单斜辉石温压计算结果Table 5 Geothermobarometer calculations of clinopyroxene
由上所述,智博安山岩中单斜辉石结晶温度为1225℃左右,结晶压力约0.795GPa,结晶深度约26km。
5.3 热液成矿作用
根据野外及镜下观察,智博矿区内发育大量钾长石化、绿帘石化等热液蚀变,角闪石中阳起石也为蚀变矿物,说明智博铁矿后期有大量热液的侵入,并且离矿体越近蚀变越强烈,矿体中也发育大量绿帘石化、钾长石化蚀变,条带状矿石(图2g)、稀疏浸染状矿石(图2h)及网脉状矿石即为热液期形成的典型矿石,这些矿石中磁铁矿与钾长石、绿帘石密切共生(图2i),表明热液作用与智博矿区磁铁矿成矿有密切的联系。
磁铁矿矿物化学特征表明智博安山岩中磁铁矿明显分为两种类型,一种是安山岩中晶形较小的磁铁矿,其Ti含量较高;另一种是蚀变较强烈的安山岩中的磁铁矿,其Ti含量较低。陈光远(1987)研究指出,在不同的地质作用下,磁铁矿具有明显的专属性,据前人(林师整,1982;陈光远等,1984;阙梅英,1984)整理的磁铁矿平均化学成分表,晶形较小的磁铁矿化学成分接近于中基性至超基性岩中副矿物成分;而蚀变安山岩中磁铁矿接近于热液成因的磁铁矿,表明后期的热液作用也参与了磁铁矿成矿。
综合野外、镜下观察及磁铁矿矿物化学特征,说明智博矿区后期的热液作用也参与了磁铁矿成矿,对智博铁矿的成矿有一定的贡献。
(1) 智博安山岩中斜长石主要为Na-高钠长石,具低TiO2,高Na2O,高Al2O3的特点;辉石主要为普通辉石,具高TiO2,高Al2O3的特点;角闪石为镁角闪石与阳起石,具低TiO2,高MgO,低Al2O3的特点;副矿物磁铁矿具高TiO2,低MgO,低Al2O3的特点。
(2) 智博安山岩中辉石、角闪石矿物化学特征表明,智博铁矿安山岩的母岩浆属于壳幔混源的玄武质岩浆,构造环境为岛弧环境。
(3) 智博安山岩中单斜辉石结晶温度为1225℃左右,结晶压力约0.795GPa,结晶深度约26km。
(4) 智博矿区后期的热液作用也参与了磁铁矿成矿,对智博铁矿的成矿有一定的贡献。
致谢 野外工作得到了新疆自治区地质调查院总工程师王磊、新疆维吾尔自治区地质矿产勘查开发局教授级高工李凤鸣、屈迅以及地矿局第三地质大队和十一地质大队的大力相助,匿名审稿专家认真细致地审阅了本文,并提出宝贵的修改建议,作者在此一并表示衷心的感谢!
[注释]
① 新疆地质矿产勘查开发局第三地质大队.2011.新疆和静县诺尔湖铁矿详查地质报告[R].
В.Н.Лодочников.1956.The main rock forming minerals [M].Beijing:Geological Publishing House:73-82(in Chinese)
Chen Guang-yuan,Li Mei-hua,Wang Xue-fang,Sun Dai-sheng,Sun Chuan-min,Wang Zu-fu,Su Yu-xuan,Lin Jia-xiang.1984.The genetic mineralogy of Gongchangling iron deposit:The second chapter magnetite [J].Minerals and Rocks,(2):14-41(in Chinese)
Chen Guang-yuan,Sun Dai-sheng,Yin Hui-an.1987.Genetic mineralogy and prospecting mineralogy [M].Chongqing:Chongqing Publishing House:1-294(in Chinese)
Dawoud M,Eliwa H A,Traversa G,Attia M S,Itaya T.2006.Geochemistry,mineral chemistry and petrogenesis of a neoproterozoic dyke swarm in the north Eastern Desert,Egypt[J].Geological Magazine,143(1):115 -135
Feng Jin-xing,Shi Fu-jng,Wang Bang-yao,Hu Jian-ming,Wang Jiang-tao,Tian Jing-quan.2010.The volcanic type iron ore in Awulale area,Western Tianshan Mountain [M].Beijng:Geological Publishing House:1-117(in Chinese)
Giret A,Bonin B,Leger JM.1980.Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-composition [J].Canadian Mineralogist,18(4):481-495Hammarstrom J M,Zen E A.1986.Aliunimun in horn-blende:an empirical igneous geobarometer [J].American Mineralogist,71:1297-1313
Hollister L S,Grissom G C,Peters E K,Stowell H H,Sisson V B.1987.Confirmation of the empirical correlation of Al in hornblende with products of solidification in calc-al-kaline plutons [J].American Mineralogist,72:231-239
Jiang Chang-yi,An San-yuan.1984.On chemical characteristics of calcic amphiboles from igneous rock and their petrogenesis significance [J].Journal of Mineralogy and Petrology,3:1-9(in Chinese with English abstract)
Jiang Chang-yi,Wu Wen-kui,Zhang Xue-ren,Cui Shang-sen.1995.The change from island arc to rift valley-evidence from volcanic rocks in Awulale area [J].Acta Petrologica Et Mineralogica,14(4):289-300(in Chinese with English abstract)
Jiang Chang-yi,Wu Wen-kui,Zhang Xue-ren,Cui Shang-sen.1996.Magma action and tectonic evolution in Awulale district,Western Tianshan Mountain [J].Journal of Xi’an Engineering University,18(2):18-24(in Chinese with English abstract)
Jiang Zong-Sheng,Zhang Zuo-Heng,Hou Ke-Jun,Hong Wei,Wang Zhi-Hua,Li Feng-Ming,Tian Jing-Quan.2012.Geochemistry and zircon U-Pb age of volcanic rocks from the Chagangnuoer and Zhibo iron deposits,western Tianshan,and their geological significance [J].Acta Petrologica Sinica,28(7):2074-2088(in Chinese with English abstract)
Jiang Zong-Sheng,Zhang Zuo-Heng,Wang Zhi-Hua,Li Feng-Ming,Tian Jing-Quan.2012.Alteration mineralogy,mineral chemistry and genesis of Zhibo iron deposit in western Tianshan Mountains,Xinjiang [J].Mineral Deposits,31(5):1051-1066(in Chinese with English abstract)
Keer A C.1998.Chemsitry of mull-morren teriary lava succession,Western Scotland[J].Mineralogical Magazine,62(3):295-312
Kushiro I.1960.Si-Al relation in clinopyroxenes from igneous rocks [J].American Journal of Science,258:518-551
Le Bas M J.1962.The rock of aluminium in igneous clinopyroxenes with relation to their parentage [J].American Journal of Science,260:267-288
Leake B E and 21 others.1997.Nomenclature of amphiboles,report of the subcommittee on amphiboles of the Internation Mineralogical Association Commission on New Minerals and Mineral Names [J].Mineral Mag,61:295-321
Leterrier J,Maury R C,Thonon P.1982.Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic seties [J].Earth and Planetary Science Letters,59:139-154
Li Xiao-jun.1994.The analysis of distribution law and mineral potential of main mineral resources in Awulale Mountain [J].Mineral Resources and Geology,8(5):344-347(in Chinese)
Li Zhu-cang,Li Yong-jun,Li Jing-hong,Luan Xin-dong,Guo Wen-jie.2006.Geochemical characteristics of the Dahalajunshan formation volcanic rocks and their implications on the tectonic setting in Awulale area [J].Xinjiang Geology,24(2):120-124(in Chinese with English abstract)
Lin Shi-zheng.1982.A contribution to the chemistry,origin and evolution of magnetite [J].Acta Mineralogica Sinica,(3):166-174(in Chinese with English abstract)Lin Wen-wei,Peng Li-jun.1994.The estimation of Fe3+and Fe2+contents in amphibole and biotite from EMPA data [J].Changchun College of Geology Journal,24(2):155-162(in Chinese with English abstract)
Liu Kuan-hou,Zhuang Dao-ze,Jiao Xue-jun.2006.The assessing and anomaly-checking countermeasures of 1∶500 000 regional geochemical exploration in the western Tianshan mountains,Xinjiang [J].Geology and Exploration,39 (6):6-9(in Chinese with English abstract)
Lu Zong-liu,Mo Jiang-ping.2006.Geological characters and ore genesis of Aulale iron-rich deposit in Xinjiang [J].Geology and Exploration,42(5):8-11(in Chinese with English abstract)
Ma Run-ze,Xiao Yuan-fu,Wei Xian-gui,Li You-guo.1997.Research on the geochemical property and genesis of basic and ultrabaisc rocks of Jinning period in the Micangshan area,Sichuan Province [J].Journal of Mineralogy and Petrology,17(supplementary issue):35-47(in Chinese with English abstract)
Ma Run-ze,Xiao Yuan-fu.2001.Study on rock-forming minerals in the basic-ultrabasic rocks of Jinning period from the Micangshan area [J].Journal of Chengdu University of Technology,28(1):34-39(in Chinese with English abstract)
Morimoto N,Fabries J,Ferguson AK.1988.Nomenslature of pyroxenes [J].Subcommittee on Pyroxenes.American Mineralogist,73:1123-1133
Nisbet E G,Pearce J A.1973.Clinopyroxene composition in mafic lavas from different tectonic settings [J].Contribution to Mineralogy and Petrology,63(2):149-160
Qiu Jia-xiang,Zeng Guang-ce.1987.The main characteristics and petrological significance of low pressure clinopyroxenes in the cenozoic basalts from Eastern China [J].Acta Petrologica Sinica,(4):1-9(in Chinese with English abstract)
Que Mei-ying.1984.The origin of Etouchang iron deposit and the characteristics of its iron minerals [J].Journal of Mineralogy and Petrology,1(1):57-70(in Chinese with English abstract)
Schmidt M W.1992.Amphibole composition in tonalite as a function of pressure:An experimental calibration of the Al-in-hornblende barometer [J].Mineralogy and Petrology,110:304 -310
Smith JV,Brown WL .Feldspar minerals [M].Germany:Springer-Verlag,1974:1-690Sun C M,Bertrand J.1991.Geochemistry of clinopyroxenes in plutonic and volcanic sequences from the Yanbian Proterozoic ophiolites (Sichuan Province,China):Petrogenetic and geotectonic implications [J].Schweiz Mineralogische Petrologische Mitteilungen,71:243-259
Sun Chuan-min.1994.Genetic mineralogy of pyroxenes from the Yanbian proterozoic ophiolites (Sichuan,China),and its geotectonic implications [J].Journal of Mineralogy and Petrology,14(3):1-15(in Chinese with English abstract)
Tian Jing-quan,Hu Jing-tao,Yi Xi-zheng,Dong Quan-hong,Liu Xing-zhong.2009.The minerogenic condition and prospecting analysis of the iron mine around Chagangnuoer-Beizhan region in Western Tianshan Mountain [J].West-China Exploration Engineering,(8):88-92(in Chinese)
Thompson R N.1974.Some high-pressure pyroxenes [J].Mineralogical Magazine,(39):768-787Wang Yong-xin,Tian Pei-ren.2003.Zoning and exploration significance of marine volcanic hotwater sedimentary deposits in Xinjiang [J].Geology and Exploration,39 (4):6-11(in Chinese with English abstract)
Wang Zhi-Hua,Zhang Zuo-Heng,Jiang Zong-Sheng,Hong Wei,Tian Jing-Quan.2012.Magnetite composition of Zhibo iron deposit in western Tianshan Mountains and its genetic significance [J].Mineral Deposits,31(5):983-998(in Chinese with English abstract)
Xiao Yuan-fu,Ma Run-ze,Wei Xian-gui,He Zheng-wei,Li You-guo.1998.The characteristics and genesis of the basic intrusive complex in chengjiang period,Micangshan,Sichuan [J].Journal of Chengdu University of Technology,25(4):537-542(in Chinese with English abstract)
Xu Guo-duan,Han Run-sheng.2006.Geology and ore exploration indication of Bayin copper deposit in the Hejing county,Xinjiang [J].Geology and Exploration,44(6):13-20(in Chinese with English abstract)
Xu Guo-feng,Shao Jie-lian.1979.Typomorphic characteristic and practical significance of magnetite [J].Geology and Exploration,3:30-37(in Chinese)
Zhang Jiang-su,Li Zhu-cang.2006.Tectonic setting of the Dahalajunshan formation volcanic rocks in awulale of west Tianshan [J].Gansu Geology,15(2):10-15(in Chinese with English abstract)
Zhang Xue-kui,Li Zhu-cang.2008.The geochemical characteristics of Dahalajunshan formation volcanic rocks in Western Tianshan Mountain [J].Gansu Science and Technology,24(3):32-35(in Chinese)
Zhang Zuo-heng,Wang Zhi-liang,Zuo Guo-chao,Wang Long-sheng,Liu Min,Gan Fu-ping,Wang Jian-wei,Zhang Chang-qing.2008.The geological evolution and copper polymetallic deposits’ mineralization environment of Western Tianshan Mountain,Xinjiang [M].Beijing:Geological Publishing House:180-202(in Chinese)
Zheng Qiao-rong.1983.Calculation of the Fe3+and Fe2+contents in silicate and Ti-Fe oxide minerals from EPMA data [J].Acta Mineralogica Sinica,(1):55-61(in Chinese with English abstract)
Zhou Xin-min,Chen Tu-hua,Liu Chang-shi,Xue Ji-yue.1982.Pyroxene and amphibole megacrysts in alkali basaltic rocks from southeastern coastal provinces of China [J].Acta Mineralogica Sinica,(1):13-20(in Chinese with English abstract)
Zhu Yong-feng,Zhang Li-fei,gu Li-Bing,Guo Xuan,Zhou Jing.2005.SHRIMP chronology and trace element geochemistry of the carboniferous volcanic rocks in the western Tianshan Mountains [J].Chinese Science Bulletin,50(18):2004-2014(in Chinese with English abstract)
[附中文参考文献]
陈光远,黎美华,汪雪芳,孙岱生,孙传敏,王祖福,速玉萱,林家相.1984.弓长岭铁矿成因矿物学专辑 第二章 磁铁矿[J].矿物岩石,(2):14-41
陈光远,孙岱生,殷辉安.1987.成因矿物学与找矿矿物学[M].重庆:重庆出版社:1-294
冯金星,石福晶,汪帮耀,胡建明,王江涛,田敬全.2010.西天山阿吾拉勒成矿带火山岩型铁矿[M].北京:地质出版社:1-117
姜常义,安三元.1984.论火成岩中钙质角闪石的化学组成特征及其岩石学意义[J].矿物岩石,3:1-9.
姜常义,吴文奎,张学仁,崔尚森.1995.从岛弧向裂谷的变迁—来自阿吾拉勒地区火山岩的证据[J].矿物岩石学杂志,14(4):289-300
姜常义,吴文奎,张学仁,崔尚森.1996.西天山阿吾拉勒地区岩浆活动与构造演化[J].西安地质学院学报,18(2):18-24
蒋宗胜,张作衡,侯可军,洪为,王志华,李凤鸣,田敬全.2012.西天山查岗诺尔和智博铁矿区火山岩地球化学、锆石U-Pb年龄及地质意义[J].岩石学报,28(7):2075-2088
蒋宗胜,张作衡,王志华,李凤鸣,田敬全.2012.新疆西天山智博铁矿床蚀变矿物学、矿物化学特征及矿床成因探讨[J].矿床地质,31(5):1051-1066
李小军.1994.阿吾拉勒山主要矿产分布规律及成矿远景浅析[J].矿产与地质,8(5):344-347
李注苍,李永军,李景宏,栾新东,郭文杰.2006.西天山阿吾拉勒一带大哈拉军山组火山岩地球化学特征及构造环境分析[J].新疆地质,24(2):120-124
林师整.1982.磁铁矿矿物化学、成因及演化的探讨[J].矿物学报,(3):166-174
林文蔚,彭丽君.1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+[J].长春地质学院学报,24(2):155-162
刘宽厚,庄道泽,焦学军.2003.新疆西天山1∶50 万化探成果评估与异常查证对策[J].地质与勘探,39(6):6-9
卢宗柳,莫江平.2006.新疆阿吾拉勒富铁矿地质特征和矿床成因[J].地质与勘探,42(5):8-11
洛多奇尼柯夫.1956.最主要的造岩矿物[M].北京:地质出版社:73-82
马润则,肖渊甫,魏显贵,李佑国.1997.四川米仓山地区晋宁期基性超基性岩地球化学性质及其成因研究[J].矿物岩石,17(增刊):35-47
马润则,肖渊甫.2001.米仓山地区晋宁期基性超基性侵入岩中造岩矿物研究[J].成都理工学院学报,28 (1):34-39
邱家骧,曾广策.1987.中国东部新生代玄武岩中低压单斜辉石的矿物化学及其岩石学意义[J].岩石学报,(4):1-9
阙梅英.1984.云南罗茨鹅头厂铁矿床主要贴矿物特征及矿床成因探讨[J].矿物岩石,1(1):57-70
孙传敏.1994.四川盐边元古代蛇绿岩中辉石的成因矿物学及其大地构造意义[J].矿物岩石,14 (3):1-15
田敬全,胡敬涛,易习正,李明,董全宏,刘兴忠.2009.西天山查岗诺尔—备战一带铁矿成矿条件及找矿分析[J].西部探矿工程,(8):88-92
王永新,田培仁.2003.浅论新疆海相火山热水沉积矿床的分带及其找矿意义[J].地质与勘探,39(4):6-11
王志华,张作衡,蒋宗胜,洪为,田敬全.2012.西天山智博铁矿磁铁矿成分特征及其矿床成因意义[J].矿床地质,31(5):983-998
肖渊甫,马润则,魏显贵,何政伟,李佑国.1998.米仓山澄江期基性侵入杂岩特征及其成因探讨[J].成都理工学院学报,25(4):537-542
徐国端,韩润生.2008.新疆和静县巴音铜矿地质特征与找矿标志[J].地质与勘探,44(6):13-20
徐国凤,邵洁涟.1979.磁铁矿的标型特征及其实际意义[J].地质与勘探,3:30-37
张江苏,李注苍.2006.西天山阿吾拉勒一带大哈拉军山组火山岩构造环境分析[J].甘肃地质,15(2):10-15
张学奎,李注苍.2008.西天山大哈拉军山组火山岩地球化学特征及地质意义[J].甘肃科技,24(3):32-35
张作衡,王志良,左国朝,王龙生,刘敏,干甫平,王见蓶,张长青.2008.新疆西天山地质构造演化及铜多金属矿床成矿环境[M].北京:地质出版社:180-202
郑巧荣.1983.由电子探针分析值计算Fe3+和Fe2+[J].矿物学报,(1):55-61
周新民,陈图华,刘昌实,薛纪越.1982.我国东南沿海碱性玄武质岩石中辉石和角闪石巨晶[J].矿物学报,(1):13-20
朱永峰,张立飞,古丽冰,郭璇,周晶.2005.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J].科学通报,50(18):2004-2014
Magmatic and Hydrothermal Mineralization of the Zhibo Iron Deposit in the Western Tian Shan,Xinjiang:Evidence from Andesite Mineralogy
SHEN Li-jun1,2,DU Yang-song2,WANG Shu-xing3,LI Da-peng2,4,GE Song-sheng2,5,WANG Kai-hu6
(1. Shandong Provincial Research Institute of Coal Geology Planning and Exploration, Taian, Shandong 271000; 2. China University of Geoscience, Beijing 100083; 3. The 8th Institute of Geology and Mineral Exploration of Shandong Province, Rizhao, Shandong 276826; 4. Shandong Geological Sciences Institute, Jinan, Shandong 250013;5. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029; 6. China Chemical Geology and Mine Bureau,Beijing 100101)
Petrographic and mineralogical characteristics of andesite from the Zhibo iron deposit have been investigated through field investigations,and electron microscope and EMPA observations.The results indicate that the plagioclase is dominated by albite,characterized by low TiO2and high Na2O,Al2O3content.The pyroxene is mainly augite and contains high TiO2and high Al2O3.The amphibole is magnesiohornblende or actinolite that has low TiO2and Al2O3,and high MgO.The magnetite includes more TiO2and less MgO and Al2O3.The parental magma of the Zhibo andesite is basaltic magma derived from mixing sources of crust and mantle.Its tectonic environment is a volcanic island arc.The clinopyroxene crystallization temperature is about 1225℃;the crystallization pressure is about 0.795 GPa,and its corresponding depth is 26 km.The later hydrothermal action in the Zhibo iron deposit also involved in the magnetite’s formation,and the hydrothermal metallogenesis had a certain contribution to the formation of the Zhibo iron deposit.
andesite,petrography,mineralogy,petrogenesis and mineralization,Zhibo iron deposit
2012-06-17;
2013-01-04;[责任编辑]郝情情。
中国地质调查局天山成矿带地质矿产调查评价项目(编号1212011120497)资助。
沈立军(1988年—),男,中国地质大学(北京)在读硕士研究生,矿产普查与勘探专业。E-mail:cugbslj@gmail.com。
P588.144+P575.1
A
0495-5331(2014)02-0321-11