阮育清
(厦门工商旅游学校,福建厦门361024)
具有无穷时滞的“食物有限”差分系统的持久性
阮育清
(厦门工商旅游学校,福建厦门361024)
研究具有无穷时滞的“食物有限”差分模型。通过对系统进行详尽的分析,得到了系统的无条件持久的结果。
持久性;差分;无穷时滞;食物有限
早在1992年,Gopalsamy[1]就提出了如下Logistic方程:并证明了该方程在a(t),d(t)为有相同周期的连续函数的条件下存在唯一的周期解。Seifert[2]则研究了该系统的持久性,证明了当a(t),d(t)均为概周期函数且满足时,系统(1)是持久的。徐建华[3]改进了文献[2]的结论,进一步证明了在除去条件(2)的情况下,系统(1)仍是持久的。
然而迄今为止,学者们对食物有限模型的研究仍较少见。本文考虑如下无穷时滞“食物有限”差分系统
其中x(n)表示第n代种群的密度,表示历史种群对现代种群的影响,ki:[0,+∞)→[0,+∞)为有界非负序列,且满足
由图1可知系统(14)是持久的。数值模拟支持笔者的结论。
图1 系统(14)的具初值x(t)=0.3,0.5,0.8,1(t=…,-n,-n+1,…,-1,0)的数值模拟图Fig.1Numerical simulation diagram of system(14)with initial value x(t)=0.3,0.5,0.8,1(t=…,-n,-n+1,…,-1,0)
(References)
[1]GOPALSAMY K.Stability and oscillations in delay differential equations of population dynamics[M].Dordrecht:Kluwer Academic Publisers Group,1992.
[2]SEIFERT G.Almost periodic solutions for delay logistic equations with almost periodic time dependence[J].Differential In⁃tegral Equation,1996,9(2):335-342.
[3]徐建华.无穷时滞Logistic方程的概周期解存在定理[J].数学年刊,2002(3):307-310.
[4]XU J B,TENG Z D.Permanence for a nonautonomous discrete single-species system with delays and feedback control[J]. Appl Math Lett,2010,23:949-954.
[5]JUAN H,TENG Z D,GAO S J.Permanence and global stability for nonautonomous N-species Lotka-valterra competitive system with impulses[J].Nonlinear Anal Real World Appl,2010,11(3):1882-1896.
[6]何尾莲.具连续时滞单种群反馈控制模型的持久性[J].福州大学学报:自然科学版,2009,37(4):468-477.
[7]CHEN F D,YANG J H,ChEN L J.Note on the persistent property of a feedback control system with delays[J].Nonlinear Anal Real World Appl,2010,11(2):1061-1066.
[8]YANG W S,LI X P,ChEN L J.Feedback control has no influence on the persistent property of a single species discrete model with time delays[J].Math Comput Modelling,2011,54(9/10):2007-2013.
[9]FAN Y H,WANG L L.Permanence for a discrete model with feedback control and delay[J].Discrete Dyn Nat Soc,doi:10.1155/2008/945109.
(责任编辑:强士端)
Permanence of"Food-limited"Discrete System with Infinite Delays
RUAN Yuqing
(Xiamen Industrial&Commercial Tourism School,Xiamen 361024,Fujian,China)
A"food-limited"discrete model with infinite delays is studied.By giving the detail analy⁃sis of the system,obtains that the system is permanent unconditionally.
permanence;discrete;infinite delays;food-limited
O175.14
A
1673-0143(2014)06-0052-05
2014-03-15
阮育清(1985—),女,助讲,硕士,研究方向:生物数学。