吴晨栋 邱龄 刘蓉等
[摘要] 目的 探讨活性维生素D在老龄大鼠体内诱导细胞发生自噬及相关因子P62/SQSTM1,VDR表达的变化。方法 21只18月龄雄性SD大鼠随机分为三组:对照组;低剂量组[VD,0.025 μg/(kg·d)];高剂量组[VD,0.1 μg/(kg·d)]。对照组给予正常饮食,定时加水;其余两组也给予正常饮食,并分别用相应剂量的VD每日给大鼠灌胃。干预180 d后,处死大鼠,电镜观察肝脏细胞自噬程度,Western blot检测P62/SQSTM1、VDR蛋白表达。 结果 1.电镜下可见对照组自噬泡占胞浆面积比小于其余两组(P < 0.05),低剂量组和高剂量组自噬泡占胞浆面积比无明显差异(P > 0.05);2.Western blot检测分析,对照组P62表达量高于其余两组(P < 0.05),低和高两剂量组之间无明显差异(P > 0.05);3.Western blot检测分析,高剂量组VDR蛋白表达稍高于对照组和低剂量组,但差异无统计学意义(P > 0.05),同时对照、低和高剂量组三组间VDR表达量也无明显差异(P > 0.05)。 结论 1.通过电镜观察,说明在老龄大鼠肝脏内VD可以诱导细胞自噬现象发生;2.使用VD干预老龄大鼠,可使P62蛋白量下降;3.VD诱导自噬和VD的受体VDR之间的关系尚不明确,需进一步研究。
[关键词] 维生素D;细胞自噬;P62/SQSTM1;VDR
[中图分类号] R363 [文献标识码] A [文章编号] 1673-9701(2014)12-0004-04
[Abstract] Objective To investigate cells autophagy and the changes of autophagy related factors P62/SQSTM1, VDR induced by active vitamin D in aging rats. Methods The 21 18-month aged male SD rats were randomly divided into three groups: control group; low dose group[VD, 0.025 μg/(kg·d)]; high dose group[VD, 0.1 μg/(kg·d)]. The control group was given a normal diet. The remaining groups were given normal daily diet also, and were lavaged daily with a dose of 0.025μg/kg, 0.1μg/kg of VD respectively. After 180 days, the rat were executed, observed the liver cell autophagy degree using electron microscope, at the same time, detection of P62/SQSTM1, VDR(VD receptor) protein expression using western blot. Results 1. The proportion of autophagosome to the area of cytoplasm was less than the other groups in control group(P < 0.05). On the contrary, there was no significant differences between low dose group and high dose group(P > 0.05). 2.P62 protein level had been increased(P < 0.05) compared to the rest of the two groups in control group. P62 protein level had no significant differences between low dose group and high dose group(P > 0.05). 3. VDR protein level was slightly higher than the other groups in high dose group, but without statistical significance(P > 0.05), and there were no significant differences between control group, low dose group and high dose group (P > 0.05). Conclusion 1. Cell autophagy can be induced by VD in aging rats liver. 2. The amount of P62 has been decreased by VD intervention in ageing rats. 3. The relationship between VDR and the mechanism of autophagy induced by VD is still not clear, and has yet to be further research.
[Key words] Vitamin D; Autophagy; P62/SQSTM1; VDR
维生素D[1α,25(OH)2D3,以下简称VD]在维持骨质新陈代谢方面有重要作用,此外还与心血管病、肿瘤、神经退行性病变等存在联系[1]。最近一项临床调查发现,AIDS患者体内VD浓度普遍低于正常人,并且随着浓度越低,病情越容易恶化。同时还发现,在被HIV和分枝杆菌共同感染的巨噬细胞内,VD可通过诱导细胞自噬来对抗HIV病毒的复制和分枝杆菌的生长[2,3],此外VD和自噬之间的联系还存在于先天性免疫、肿瘤等病理生理现象中[5,6]。而VD受体VDR在上述病生理过程的自噬初始阶段、延伸阶段、溶媒体融合阶段均有参与,尤其在起始阶段对mTOR的抑制非常重要,以上现象提示VDR可能参与到了以上通路中[4,7]。P62在自噬过程中,作为泛素化的蛋白、受损细胞器等物质“受体”,使其通过P62被自噬降解[8],同时,P62对于自噬泡的形成也非常重要[9]。本实验在于研究维生素D通过受体VDR在诱导细胞自噬方面的机制以及对自噬相关因子P62的作用。
1 材料与方法
1.1 实验动物
18月龄雄性SD大鼠21只,购自山西医科大学动物中心,体重350~500 g,颗粒饲料购自山西医科大学动物中心。
1.2 主要试剂
VD购自美国SIGMA公司,P62抗体、VDR抗体、β-actin抗体购自Santa Cruz公司,HRP羊抗兔二抗购自博士德公司,BCA蛋白分析盒购自博士德公司,ECL试剂盒购自博士德公司,预染蛋白Marker购自博士德公司,电镜及其相关材料由山西医科大学中心实验室提供。
1.3 动物分组
21只大鼠经过两周的洗脱期,通过随机分组分为三组:对照组;低剂量组[VD,0.025 μg/(kg·d)];高剂量组[VD,0.1 μg/(kg·d)],每组7只。
1.4 模型制备
生理盐水稀释VD,制备两种相应浓度,4℃保存。对照组给予正常饮食,不限进食量,剩余两组每天按照相应VD剂量给予灌胃干预。
1.5 标本采集
大鼠预麻处死,冰上取肝脏迅速切去一块,切成1 mm3大小,2%戊二醛固定液中静置2 h,缓冲液冲洗3次后置于缓冲液中4℃保存,用于电镜制片。剩余肝脏组织,-80℃保存,用于Western blot检测。
1.6 电镜观察
上述预处理的小块肝脏组织用二钾砷酸钠缓冲液漂洗2 h,放入1%的锇酸固定,于4℃保存2 h,从固定液中取出,依次放入30%、50%、70%的乙醇醋酸铀饱和液中,每种浓度饱和液均为10 min,取出组织再次分别放入80%、90%、100%乙醇中,每种浓度饱和液均为10 min,再放入包埋液中2 h,取出包埋37℃过夜,转入60℃温箱48 h,做1~2 μm切片,使用美兰染色光镜定位,制作超薄切片,染色后电镜下观察拍照、记录。
1.7 Western blot
取出-80℃保存的肝脏组织称重并剪成碎块,依照裂解液说明书推荐比例根据组织重量加入相应体积裂解,然后匀浆30 min,冰上孵育1~3 h,冰冻离心机以10 000~14 000 g离心3~5 min,取上清。BCA试剂盒测定蛋白浓度,调整各样本的蛋白浓度至相同,-80℃保存。蛋白提取液与上样缓冲液混匀,在沸水中加热15 min,蛋白和预染Marker分别加入各条泳道,电压80V,大约30 min后,样品至浓缩胶和分离胶交界处,电压调至120 V,继续电泳约120~150 min,样品至胶底部,电泳完毕。转膜电流依据膜的面积大小而定,时间大约为33~40 min,5%的奶粉封闭液室温下摇床上敷2 h,TBST稀释一抗P62、VDR、β-actin,均为1∶500。一抗敷膜摇床上4℃过夜,第2天TBST液洗3次,每次10 min,敷二抗,摇床上2 h,再用TBST洗3次,加显影剂在扫描仪下观察,并拍片记录。
1.8 统计学处理
采用SPSS 16.0统计学软件分析处理数据。计量资料用均数±标准差(x±s)表示,多组间比较采用方差分析,两两间比较采用SNK,P < 0.05为差异有统计学意义。
2 结果
2.1 肝脏细胞自噬情况
电镜观察可见,对照组细胞水肿,线粒体肿胀,自噬泡较少,低剂量和高剂量组细胞结构尚完整,自噬泡较多,体积较大,有时可见少量终末期自噬泡。使用Image Pro Plus 6.0软件分析自噬泡占胞浆面积比例:①对照组面积较低剂量组面积和高剂量组面积小,自噬泡较少,差异有统计学意义(P < 0.05)。②低剂量组和高剂量组自噬泡较多,两组间自噬泡面积比无明显不同,差异无统计学意义(P > 0.05)。见图1和表1。
3 讨论
自噬(autophagy)即自我吞噬,通过物质消化再利用,从而达到一种微环境的自我稳态,功能包括抗衰老、抑制心肌肥厚等。作为一种多步骤、多成分参与和高度复杂的过程,自噬必须接受严格的机制调控,据研究可知已有超过30种的ATG基因调控着自噬过程,包括ATG1、ATG5、ATG12、ATG8(哺乳动物LC3)等,它们之间相互作用,介导整个自噬过程的发生[11-13]。
维生素D除了参与钙的代谢调控以及心血管病、肿瘤、神经退行性病等病理过程[1],近来研究表明,维生素D在抑制肿瘤细胞和清除巨噬细胞内的结核分枝杆菌方面起到了重要的作用。而自噬在其中可能充当了中介的作用,即维生素D通过诱导自噬的发生,从而抑制肿瘤细胞生长和清除病菌[2,6]。维生素D诱导自噬可能通过多种途径发生联系。包括维生素D可能促使内质网中的钙离子流向胞浆;对mTOR(负向调控自噬)通路的抑制;通过改善溶酶体内酸性环境从而增强溶解酶的水解能力等等。其中很重要的一条可能是维生素D通过其受体VDR,实现了对自噬的调控。VDR作为核受体,在多种组织内均有表达,包括肾脏、皮肤、肠、甲状腺等。VDR调控着包括从钙的代谢到抗菌肽(cathelicidin)的表达等广泛的病理生理过程,所以其可能参与到了骨质代谢、心血管疾病、肿瘤以及自噬等过程中。其中抗菌肽作为受VDR调控的下游基因,对于自噬泡的形成是必需的,研究发现,如果抗菌肽受到抑制,蛋白Beclin-1的表达也会被抑制,而Beclin-1负责将多种和自噬相关的蛋白定位于自噬泡上,所以自噬活性也会受到抑制[7]。本实验使用维生素D干预老龄大鼠,在电镜下可见自噬泡的形成,并且比处理组自噬活性增强,说明维生素D诱导了自噬的发生。而其受体VDR表达量无变化,所以尚不能判断其是否参与到了这种通路中去。维生素D和自噬之间的机制较为复杂,通路多种多样,目前尚未明确,本实验证实了他们之间的联系,但对其具体机制仍然需要进一步研究。
P62/SQSTM1作为一种支架蛋白,在选择性地清除受损蛋白和细胞器方面发挥了重要的作用,其自身主要包括PB1区域、LIR区域、UBA绑定区域等特殊的结构区域,这些多样化的结合区域提示P62/SQSTM1在信号转导通路中充当着多种角色。例如LIR结合域可以介导LC3(一种自噬标记物)和P62/SQSTM1的结合,从而使P62/SQSTM1通过LC3和自噬泡结合实现了P62/SQSTM1蛋白本身以及泛素化蛋白被自噬降解[9,10]。本实验在使用维生素D干预后蛋白P62/SQSTM1含量下降,说明蛋白通过自噬被降解,与以上研究结果吻合,说明维生素D诱导了自噬的发生,同时维生素D对蛋白P62/SQSTM1含量的影响是通过自噬实现的,为我们认识维生素D对自噬的作用提供了新的认识。
综上所述,VD可以诱导自噬发生,促进蛋白P62的通过自噬降解,VDR在其中的作用尚不明确。VD和自噬之间的联系为临床上某些与自噬相关的疾病提供了新的认识,鉴于VD可以获得的便利性以及较小的副作用,在与自噬相关的疾病的预防、治疗等方面可能存在着巨大的利用价值,需要我们进一步的研究。
[参考文献]
[1] Shi J,Wong J,Piesik P,et al. Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NF-κB signaling[J]. Autophagy,2013,139(10):1591-1603.
[2] Campbell GR,Spector SA,Spector SA. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1[J]. PLoS Pathog,2012,8(11):e1003017.
[3] Campbell GR,Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and mycobacterium tuberculosis infection in macrophages through the induction of autophagy[J]. PLoS Pathog,2012,8(5):e1002689.
[4] Campbell GR,Stephen A. Spector autophagy induction by vitamin D inhibits both mycobacterium tuberculosis and human immunodeficiency virus type 1[J]. Autophagy,2012, 8(10):1523-1525.
[5] Jo EK. Innate immunity to mycobacteria: vitamin D and autophagy[J]. Cell Microbiol,2010,12(8):1026-1035.
[6] Hoyer-Hansen M,Nordbrandt SP,Jaattela M,et al. Autophagy as a basis for the health-promoting effects of vitamin D[J]. Trends Mol Med,2010,16(7):295-302.
[7] Shaoping Wu,Jun Sun. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection[J]. Discov Med,2011,11(59):325-335.
[8] Shaid S,Brandts CH,Serve H,et al. Ubiquitination and selective autophagy[J]. Cell Death Differ,2013,20(1):21-30.
[9] Bensaad K,Cheng EC,Vousden KH,et al. Modulation of intracellular ROS levels by TIGA-R controls autophagy[J]. EMBO J,2009,28(19):3015-3026.
[10] Pankiv S,Clausen TH,Lamark T,et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem,2007,282(33):24131-24145.
[11] Félix Moruno,Eva Pérez-Jiménez,Erwin Knecht,et al. Regulation of autophagy by glucose in mammalian cells[J]. Cells,2012,1372-1395.
[12] Vellai T. Autophagy genes and ageing[J]. Cell Death Differ,2009,16(1):94-102.
[13] De Meyer GR,Martinet W. Autophagy in the cardiovascular system[J]. Biochim Biophys Acta,2009,1793(9):1485-1495.
[14] Komatsu M,Kageyama S,Ichimura Y,et al. p62/SQSTM1/A170: physiology and pathology[J]. Pharmacol Res,2012, 66(6):457-462.
[15] Wang J,Lian H,Zhao Y,et al. Vitamin D3 induces autophagy of human myeloid leukemia cells[J]. J Biol Chem,2008,283(37):25596-25605.
[16] Xiang W,Kong J,Chen S,et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems[J]. Am J Physiol Endocrinol Metab,2005,288(1):E125-E132.
(收稿日期:2014-03-04)
综上所述,VD可以诱导自噬发生,促进蛋白P62的通过自噬降解,VDR在其中的作用尚不明确。VD和自噬之间的联系为临床上某些与自噬相关的疾病提供了新的认识,鉴于VD可以获得的便利性以及较小的副作用,在与自噬相关的疾病的预防、治疗等方面可能存在着巨大的利用价值,需要我们进一步的研究。
[参考文献]
[1] Shi J,Wong J,Piesik P,et al. Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NF-κB signaling[J]. Autophagy,2013,139(10):1591-1603.
[2] Campbell GR,Spector SA,Spector SA. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1[J]. PLoS Pathog,2012,8(11):e1003017.
[3] Campbell GR,Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and mycobacterium tuberculosis infection in macrophages through the induction of autophagy[J]. PLoS Pathog,2012,8(5):e1002689.
[4] Campbell GR,Stephen A. Spector autophagy induction by vitamin D inhibits both mycobacterium tuberculosis and human immunodeficiency virus type 1[J]. Autophagy,2012, 8(10):1523-1525.
[5] Jo EK. Innate immunity to mycobacteria: vitamin D and autophagy[J]. Cell Microbiol,2010,12(8):1026-1035.
[6] Hoyer-Hansen M,Nordbrandt SP,Jaattela M,et al. Autophagy as a basis for the health-promoting effects of vitamin D[J]. Trends Mol Med,2010,16(7):295-302.
[7] Shaoping Wu,Jun Sun. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection[J]. Discov Med,2011,11(59):325-335.
[8] Shaid S,Brandts CH,Serve H,et al. Ubiquitination and selective autophagy[J]. Cell Death Differ,2013,20(1):21-30.
[9] Bensaad K,Cheng EC,Vousden KH,et al. Modulation of intracellular ROS levels by TIGA-R controls autophagy[J]. EMBO J,2009,28(19):3015-3026.
[10] Pankiv S,Clausen TH,Lamark T,et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem,2007,282(33):24131-24145.
[11] Félix Moruno,Eva Pérez-Jiménez,Erwin Knecht,et al. Regulation of autophagy by glucose in mammalian cells[J]. Cells,2012,1372-1395.
[12] Vellai T. Autophagy genes and ageing[J]. Cell Death Differ,2009,16(1):94-102.
[13] De Meyer GR,Martinet W. Autophagy in the cardiovascular system[J]. Biochim Biophys Acta,2009,1793(9):1485-1495.
[14] Komatsu M,Kageyama S,Ichimura Y,et al. p62/SQSTM1/A170: physiology and pathology[J]. Pharmacol Res,2012, 66(6):457-462.
[15] Wang J,Lian H,Zhao Y,et al. Vitamin D3 induces autophagy of human myeloid leukemia cells[J]. J Biol Chem,2008,283(37):25596-25605.
[16] Xiang W,Kong J,Chen S,et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems[J]. Am J Physiol Endocrinol Metab,2005,288(1):E125-E132.
(收稿日期:2014-03-04)
综上所述,VD可以诱导自噬发生,促进蛋白P62的通过自噬降解,VDR在其中的作用尚不明确。VD和自噬之间的联系为临床上某些与自噬相关的疾病提供了新的认识,鉴于VD可以获得的便利性以及较小的副作用,在与自噬相关的疾病的预防、治疗等方面可能存在着巨大的利用价值,需要我们进一步的研究。
[参考文献]
[1] Shi J,Wong J,Piesik P,et al. Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NF-κB signaling[J]. Autophagy,2013,139(10):1591-1603.
[2] Campbell GR,Spector SA,Spector SA. Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1[J]. PLoS Pathog,2012,8(11):e1003017.
[3] Campbell GR,Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and mycobacterium tuberculosis infection in macrophages through the induction of autophagy[J]. PLoS Pathog,2012,8(5):e1002689.
[4] Campbell GR,Stephen A. Spector autophagy induction by vitamin D inhibits both mycobacterium tuberculosis and human immunodeficiency virus type 1[J]. Autophagy,2012, 8(10):1523-1525.
[5] Jo EK. Innate immunity to mycobacteria: vitamin D and autophagy[J]. Cell Microbiol,2010,12(8):1026-1035.
[6] Hoyer-Hansen M,Nordbrandt SP,Jaattela M,et al. Autophagy as a basis for the health-promoting effects of vitamin D[J]. Trends Mol Med,2010,16(7):295-302.
[7] Shaoping Wu,Jun Sun. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection[J]. Discov Med,2011,11(59):325-335.
[8] Shaid S,Brandts CH,Serve H,et al. Ubiquitination and selective autophagy[J]. Cell Death Differ,2013,20(1):21-30.
[9] Bensaad K,Cheng EC,Vousden KH,et al. Modulation of intracellular ROS levels by TIGA-R controls autophagy[J]. EMBO J,2009,28(19):3015-3026.
[10] Pankiv S,Clausen TH,Lamark T,et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy[J]. J Biol Chem,2007,282(33):24131-24145.
[11] Félix Moruno,Eva Pérez-Jiménez,Erwin Knecht,et al. Regulation of autophagy by glucose in mammalian cells[J]. Cells,2012,1372-1395.
[12] Vellai T. Autophagy genes and ageing[J]. Cell Death Differ,2009,16(1):94-102.
[13] De Meyer GR,Martinet W. Autophagy in the cardiovascular system[J]. Biochim Biophys Acta,2009,1793(9):1485-1495.
[14] Komatsu M,Kageyama S,Ichimura Y,et al. p62/SQSTM1/A170: physiology and pathology[J]. Pharmacol Res,2012, 66(6):457-462.
[15] Wang J,Lian H,Zhao Y,et al. Vitamin D3 induces autophagy of human myeloid leukemia cells[J]. J Biol Chem,2008,283(37):25596-25605.
[16] Xiang W,Kong J,Chen S,et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems[J]. Am J Physiol Endocrinol Metab,2005,288(1):E125-E132.
(收稿日期:2014-03-04)