陈辞 李炎杰
摘要:保险需求的影响因素包括国内生产总值、通货膨胀率、存款利率、保险价格及一些社会文化等多方面的因素。本文选用1985-2011年的数据,通过建立计量经济学模型,从实证角度分析了影响保险需求的因素及其影响程度。结果表明保费收入与国内生产总值和存款利率之间存在着长期均衡关系,保费收入与国内生产总值正相关,与存款利率负相关。
关键词:保险需求;国内生产总值;存款利率
中图分类号:F840
一、影响保险需求的因素及相关实证研究综述
随着计量学的不断发展,国外的学者运用计量经济学的新方法对影响保险需求的因素作了大量的实证分析,虽然得出的结论不尽相同,但是其中有些因素对保险需求的影响获得了广泛的认同,如经济增长因素。另一些因素则由于每个国家的情况不同,对保险需求是否有影响成为引起争议的问题。我国的学者运用计量经济学方法来分析保险需求影响因素的文章为数不少。卓志(2001)利用1986年到1995年的序列数据建立了多元回归模型,对我国人寿保险需求进行了实证研究,其认为:我国较高的少年儿童赡养率及正在增长的老年赡养率对寿险需求有正面影响,而我国人口较低的教育水平可能会阻碍保险业的发展,预期的通货膨胀对保险有负面影响但是不十分显著的。徐爱荣(2002)用1980年到2001年时间序列数据,建立多元线性回归模型,结果表明国内生产总值对保险需求的正面影响以及物价指数对保险需求的负面影响均较为显著,虚拟变量对外开放无法通过统计检验,但是他认为根据实际情况,保险市场的对外开放仍是具有正面影响的解释变量。阎建军、王治超(2002)采用1985年到1997年的相关数据,认为 GNP的变动是导致我国寿险需求总量变动的主要原因,而利率变动对我国寿险需求总量变动的影响很微弱。吴江鸣、林宝清(2003)利用1980年至2002年的时间序列数据建立了一个计量模型,分析了市场机制与保险品种创新对我国保险需求的影响。陈之楚、刘晓敬(2004)用多元线性回归模型考察了1990年到2001年期间居民人均收入、恩格尔系数、利率、社会保障制度安排和储蓄对寿险需求的影响。李良(2006)抽取了全国30个省市1998年到2003年的数据就收入、通货膨胀率、社会保障、银行利率、死亡率等对寿险需求影响的因素与保费收入间的相关性做了Granger因果性分析,但并没有运用协整分析方法。
二、保险需求的影响因素
保险需求包括以下三个影响因素。
(一)国内生产总值
保险需求的增长离不开经济的发展,而国内生产总值作为衡量一国经济发展的主要指标,无疑是影响一国保险需求的主要因素。随着收入水平的增加,消费结构也会发生变化。根据马斯洛的“需求层次理论”,随着收入的提高,人们也将由生存需要为主的单一消费方式向消费多样化发展,安全的需求将成为人们日常生活中不可缺少的部分,并在消费结构中占有越来越重要的地位。这就从根本上扩大了保险需求。
(二)利率
保险是一种金融商品,而且是储蓄的替代品,当利率下调时储蓄的收益降低了,人们会转而购买保险或其他金融商品。利率也可以通过影响国内生产总值从而间接影响保险需求。利率是中央银行实施货币政策、调整国民经济运行的一个工具。利率调整刺激了投资,促进了经济的发展和国内生产总值的增长,从而提高了保险需求。
(三)通货膨胀
通货膨胀对保险需求的影响主要表现为两个方面:第一,通货膨胀使得消费者的实际收入水平增长速度放缓,由于收入与保险需求的正相关性,这将导致保险需求增长速度的下降或者保险需求的减少。第二,通货膨胀引起其他一些环境变量的变化,从而使寿险与其他的替代品相比预期收益发生变化,进而影响对保险的需求。
三、中国保险需求的实证分析
本部分分为以下几个方面进行研究。
(一)变量选取及数据来源
本文选择保费收入作为被解释变量,而且数据比较容易取得。在影响保险需求的各种因素中,有些因素的变动会同时影响人身保险和财产保险的需求,比如国内生产总值、通货膨胀率和利率。有些因素,如出生率、死亡率等,对寿险需求的影响明显大于对财险需求的影响。在选择变量时本文选用对寿险和财险都有明显影响的变量。
在模型中,被解释变量保费收入(Premium Income)用PI来表示。解释变量国内生产总值用GDP来表示,我们选用CPI数据来代替通货膨胀率,并以1978年的数据为基期,即令1978年的CPI等于100。利率本文采用的是一年期定期存款利率,并用DR(Deposit Rates)来表示。对以上四个变量取自然对数后分别记为LPI、LGDP、LCPI和LDR。
本文选用1985-2007年的数据进行分析,各年度GDP、CPI及保费收入数据来源于中经网统计数据库,利率数据来源于中国人民银行网站,我们采用线性内插法计算出每年的利率。本文应用EVIEWS6.0软件。
(二)时间序列的平稳性检验
由于模型所涉及到的变量为宏观经济数据,而经济时间序列通常是非平稳的,因此我们在建立模型之前首先要检验时间序列的平稳性,否则有可能导致伪回归。
1.单位根检验
本文选用ADF检验,结果如表1所示。
在5%的显著水平下,LPI、LGDP、LCPI和LDR都为非平稳数列。所以不能直接用普通最小二乘法进行回归,否则可能出现无意义的“伪回归”。
对以上四个非平稳序列进行一阶差分,差分后的序列分别记为DLPI、DLGDP、DLCPI和DLDR,并对差分后的序列进行单位根检验,结果四个序列进行一阶差分后均为平稳序列,即LPI、LGDP、LCPI和LDR均为一阶单整序列。
2.协整检验
常用的协整向量估计方法有EG检验和Johansen检验。相比EG检验,Johansen检验基于多元VAR 框架,允许变量之间的即时相互反馈作用,并允许多个变量以不同的速度对扰动项进行反映与调整,使得系统向长期均衡靠近。Gonzalo(1994)通过Monte Carlo 模拟方法,发现Johansen 的方法有最小的均方差,它们的有限样本性质也与渐近结果一致。鉴于此,我们采用Johansen 的方法估计协整向量。
Johansen检验统计量主要有Trace 统计量和Max-Eigen 统计量。运用软件进行Johansen检验后结果如表2所示。
上述结果表明,模型存在唯一的协整关系。
(三)模型的设定
根据本文前面部分对影响保险需求的因素的分析及协整检验的结果,我们建立以下的对数线性模型:
(四)模型的估计与检验
由于模型已经通过了Johansen检验,我们直对模型进行线性回归。结果如下:
虽然 值较高,F检验可以通过,但是模型的三个解释变量都无法通过t检验。
由经济理论可以知道,国内生产总值和CPI之间存在着相关性,有可能是模型存在多重共线性导致无法通过t检验,所以我们对模型进行多重共线性的检验。我们对LGDP和LCPI进行回归,发现两者之间的相关系数高达0.976438,证明两者高度相关。
(五)模型的调整
我们采用剔除变量的方法解决多重共线性的问题。由经济理论及其他学者所做的大量实证分析可知,GDP对保费收入的影响大于CPI对保费的影响,因此我们剔除变量LCPI,建立新的模型:
由于模型发生了变化,需要重新进行Johansen检验。结果如表3所示:
由上表可以看出,经调整后的模型也存在着唯一的协整关系。
对模型进行回归,结果如下:
我们还需要进一步检验模型是否存在异方差和自相关。
检验异方差通常可以采用Goldfeld-Quanadt检验、White检验、ARCH检验和Glejser检验。由于我们采用的是时间序列数据,所以选用ARCH检验。结果证明,当ARCH过程为一阶时,模型不存在异方差。
所以模型存在着自相关。我们采用AR(1)模型来修正回归方程残差序列的自相关。修正后的回归方程如下:
1 模型估计结果说明,保费收入与国内生产总值和利率之间存在长期的稳定关系,并且国内生产总值增加1%,保费收入增加1.122081%,利率下降1%(这里是指利率的变化率为1%,而不是名利利率下降1%),保费收入增长0.476071%。 四、结论和后续研究 通过以上实证分析,我们可得出如下结论:一是我国保费收入与国内生产总值以及存款利率之间存在着长期的均衡关系;二是保费收入与国内生产总值正相关,与存款利率负相关;三是消费物价指数与国内生产总值存在着严重的多重共线性,我们把它从模型中剔除了,而作为随即扰动项处理。 由于有些数据较难取得,本文所采用的变量里并未包含所有对保费收入有重要影响的变量,而是作为随即扰动项处理,这使得一些影响保险需求的重要因素无法进入模型,得到具体的对保费收入的影响程度。此外,由于中国恢复国内保险业务的时间尚短,导致本文所采用的数据的样本容量较小,可能对某些计量经济方法的使用有影响。这些不足之处也是在后续研究中需要想办法解决的问题。 参考文献: [1]林宝清.保险需求定量分析[J].金融研究,1992(7). [2]卓志.我国人寿保险需求的实证分析[J].保险研究,2001(5). [3]徐爱荣.中国保险市场需求潜力分析[J].上海统计,2002(5). [4]阎建军,王治超.转轨时期我国寿险需求的实证分析[J].保险研究,2002(11). [5]陈之楚,刘晓敬.我国寿险需求决定因素分析[J].保险研究,2004(6). [6]宗良,于文君.新型货币战下的金融战略研究[J].中国市场,2013(11). (编辑:周南)