立足人才成长将数学思想渗透到初中数学教学中

2014-04-29 22:12刘少英
成才之路 2014年28期
关键词:渗透到方程组数形

刘少英

我们知道,问题是数学的心脏,方法是数学的行为,思想是数学的灵魂。数学教育,要有助于学生建立对数学全面、正确的认识,使学生具有适应生活和社会的能力,使他们亲身运用所学知识和思想方式思考和处理问题,促进学生成长成才。《数学课程标准》指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用……”通过对教材分析,初中数学常用数学思想有:数形结合的思想、方程的思想、转化思想 (化归思想)、对比思想、类比思想、分类思想等。长期教学中,我越来越认识到将数学思想渗透到数学教学中的重要性。作为教师,不仅要教给学生知识技能,更要教会学生“数学地思维”,用数学方法去分析、解决现实问题。

一、将数形结合的思想渗透到初中数学教学中

数形结合是初中数学中的一种重要的思想方法。数形结合的思想贯穿初中数学教学的始终,初中课本中许多内容都体现了数形结合思想。①把一元一次不等式的解集在数轴上表示;②一次函数与二元一次方程组的联系。每个二元一次方程组都对应两个一次函数,从“数”的角度看,方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”角度看,解方程组相当于确定两条直线交点的坐标。③函数图像表示函数值随自变量的变化趋势。采用数形结合思想解决问题的关键,是找准数与形的契合点。如果能将数与形巧妙地结合起来,有效地相互转化,一些看似无法解决的问题就会迎刃而解,产生事半功倍的效果。

二、将方程的思想渗透到初中数学教学中

方程思想是指在求解数学问题时,从题中的已知量和未知量之间的数量关系入手,找出相等关系,运用数学符号形成的语言将相等关系转化为方程(或方程组),再通过解方程(组)使问题获得解决。方程思想相当重要,应用十分广泛,不仅解应用题要用它,在其他类型的题中也要常常会用到方程的思想。例如,在解决一些几何问题计算图形的边长或围成的面积时,也常常会用到利用面积不变性、相似形性质、勾股定理、直角三角形边角关系等列方程求解。例如:ΔABC中,D、E分别是AB、AC上的点,且DE∥BC,若DE=2,BC=3,BD=1,求线段AD的长(相似形性质列方程求解)。应该说,方程的思想贯穿数学学习的始终。学生在学习过程中,通过对方程思想的理解,就能解决许多看似难以解决的问题。

三、将转化(化归)的思想渗透到初中数学教学中

转化的数学思想方法就是在研究和解决有关数学问题时采用某种手段,将问题通过变换进而达到解决问题的一种方法。比如未知向已知转化、一般向特殊转化、部分向整体转化、新运算向老运算转化、数向形转化、不规则向规则转化等。转化思想一般是通过定义、性质、法则、定理等,把问题一改原来的面貌,由一种形式转化为另一种形式,使要解决的问题转为另一个易解决或已解决的问题。

转化思想是初中数学中最常见的思想方法,应用广泛。初中课本中,如下内容体现了转化思想:①解分式方程时,先去分母将分式方程化归为整式方程,求出整式方程的解,再经过检验得到分式方程的解。②二元二次方程组转化为二元一次方程组求解。③证明四边形的内角和为360度,是把四边形转化成两个三角形。

四、将对比的思想渗透到初中数学教学中

对比是一切理解和思维的基础,对比的思想方法在数学教学和学习中有着无可替代的优越性。对比思想就是指在不同对象之间,根据它们某些方面(如特点、属性、关系)的相同、相反、相似之处,进行比较,使前后知识系统化,把易混淆的知识理顺,把模糊的知识澄清,开阔学生的视野。例如同类项与同类二次根式、线段与射线、角平分线与三角形的角平分线等等知识,常用表格形式对比。下面以角平分线与三角形的角平分线为例来说明。

通过这样的对比,不断加深对这些概念的理解。

五、将类比(联想)的思想渗透到初中数学教学中

类比,是从事物之间具有某种联系与相似性,推出另一些事物的联系与相似性的一种思维方法。数学类比(联想)是知识学习与数学应用的重要思维形式。因此,在数学教学中,重视培养学生的类比联想能力——正确处置联想的思维迁移是十分重要的。比如学习分式,就类比分数性质得出分式基本性质,再类比分数运算法则得出分式运算法则;相似多边形的性质和相似三角形的性质类比联想。联想是一个综合思维过程,它经常伴随着分析、归纳、演绎、综合等推理形式,进行构思解疑。

六、将分类思想渗透到初中数学教学中

数学分类思想,是把研究的数学对象按照一定标准划分成几种情况或几个部分,逐一进行研究和解决。它既是一种重要的数学思想,又是一种重要的数学逻辑方法。通过分类可化繁为简,化难为易,使思维有条理,使思维全面缜密。初中阶段学生还未完全形成分类讨论的意识,分不清哪些问题需要分类及分类的原则。而这就有赖老师在教学中结合课本,按照新课标要求设计一些学生能接受且需分情况进行讨论的问题,启发引导,揭示分类讨论思想的本质。

例 1:函数y=kx+b(k≠0、b≠0)的图像经过哪几个象限?这个问题学生往往不注意k、b的值对一次函数图像位置的影响,讲解或讨论时要使学生明确k值决定函数图像的变化趋势(上升或下降)、b值决定函数图像交y轴的位置(交y轴的正半轴或负半轴)。于是,分四类情形进行讨论:①k>0、b>0;②k>0、b<0;③k<0、b>0;④k<0、b<0。

例 2:已知方程kx2+(2k+1)x+k+1=0有实数根,求k的取值范围。此题很多同学会忽略对k值的讨论,而由△(2k+1)2-4k(k+1)≥0得出k≤■。正确解答应分两类情况进行讨论:①当k=0时,方程为一元一次方程x+1=0,有实数根x=-1;②当k≠0时,方程为一元二次方程,根据有实数根的条件得:△(2k+1)2-4k(k+1)≥0,求得k≤■且k≠0。综合①、②,得k的取值范围是k≤■。

以上两题是常见题型,实施教学时引导学生思考此类问题,既渗透分类思想的目的,又使学生通过具体的实例体会分类的实质。同时,也使学生逐步掌握分类的几个原则:①分类中的每一部分是相互独立的;②一次分类按同一标准;③分类讨论应逐级有序进行。正确的分类必须周全,确保不重不漏。

数学思想还有许多,这里难免以偏概全。我们应该认识到将数学思想渗透到数学教学当中的重要意义,这样可以让学生自觉不自觉地理智地归纳和应用,教会学生科学地分析和解决问题,培养良好的思维习惯,培养学生的独立性和创新性,促进学生成才。

(广东省乐昌市坪梅中学)

猜你喜欢
渗透到方程组数形
深入学习“二元一次方程组”
数形结合 理解坐标
数形结合 相得益彰
数形结合百般好
数形结合 直观明了
《二元一次方程组》巩固练习
一类次临界Bose-Einstein凝聚型方程组的渐近收敛行为和相位分离
偷闲
把爱国主义教育渗透到历史课堂教学之中
如何让数学文化在中学课堂中绽放魅力