吉尔吉斯白桦BkWRKY基因克隆与序列分析

2014-04-29 00:44田玉富崔璨谢龙飞等
安徽农业科学 2014年23期
关键词:生物信息学分析

田玉富 崔璨 谢龙飞等

摘要从吉尔吉斯白桦转录组文库测序中获得白桦BkWRKY1转录因子的cDNA序列,该序列包含2 189个碱基。序列比对和同源性分析表明,该基因cDNA序列包含1 728 bp的开放阅读框,可编码575个氨基酸,5′非翻译区(UTR)为119 bp,3′非翻译区(UTR)为342 bp。该基因属于WRKY transcription factor家族,含有2个WRKY结构域,蛋白分子量为62.483 kD,理论等电点为7.32,负电荷残基(Asp+Glu)总数为62个,正电荷残基(Arg+Lys)总数为62个。蛋白不含有信号肽,具有一定的亲水性,为亲水蛋白,无跨膜结构。同源性比较与进化树分析表明,吉尔吉斯白桦WRKY蛋白与大豆和蒺藜苜蓿的WRKY蛋白在进化上关系较近。该基因在0.6%NaHCO3胁迫处理后表达量增加,为上调表达基因。

关键词吉尔吉斯白桦;WRKY转录因子;生物信息学分析

中图分类号S188文献标识码A文章编号0517-6611(2014)23-07703-07

基金项目中央高校基本科研业务费专项资金项目(DL12CA13);东北林业大学大学生创新训练项目(201310225101)。

作者简介田玉富(1991- ),男,宁夏同心人,本科生,专业:林学。*通讯作者,硕士研究生,从事植物资源学领域的研究。

收稿日期20140709在众多的转录因子中,WRKY转录因子是当前研究较为广泛的植物特有的转录因子,最初是从甜马铃薯[1]、野燕麦[2]、欧芹[3]和拟南芥[4]中克隆获得,由于其蛋白含有高度保守的60个氨基酸组成的WRKY结构域而将其命名为WRKY转录因子[5]。WRKY结构域的核心序列靠近氨基(N)末端,由WRKYGQK等7个保守的氨基酸残基组成,能够与基因启动子中的(T)(T)TGAC(C/T)序列(W盒)发生特异性结合,从而调节基因的表达,参与多种与植物生长发育、胁迫应答和物质代谢等有关的重要生理过程;而锌指结构位于羧基(C)末端。根据WRKY转录因子中WRKY结构域的个数以及锌指的类型将其分为3个大组。1.1试验材料一年生吉尔吉斯白桦(Betula kirghisorum)叶片。

1.2方法

1.2.1BkWRKY1基因的克隆及序列分析。构建了0.6% NaHCO3 胁迫下吉尔吉斯白桦叶片组织的转录组测序文库,通过对转录组文库随机测序,获得BkWRKY1基因cDNA序列。采用NCBI 的开放读码框(ORF founder)寻找软件(http://www.ncbi.nlm.nih.gov/gorf/gorf.html),确定该基因的开放读码框;采用ProtParam(http://web.expasy.org/protparam/)软件计算该基因的分子量、等电点、亲水性。

1.2.2BkWRKY1蛋白家族、保守区及二级结构预测。采用pfam27.0(http://pfam.sanger.ac.uk/)软件预测蛋白家族,采用BlastP(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)预测保守区,采用SOPMA(http://npsa-pbil.ibcp.fr/cgi-bin /secpred_sopma.pl)预测BkWRKY1蛋白的二级结构。

1.2.3BkWRKY1信号肽、疏水性及跨膜结构预测。采用SignalP4.1(http://www.cbs.dtu.dk/services/SignalP/)进行信号肽预测,采用ProScal(http://web.expasy.org/protscale/)进行蛋白疏水性预测。用TMHMM程序(http://www.cbs.dtu.dk/services/TMHMM)对BkWRKY1进行跨膜结构预测。

1.2.4序列相似性分析及进化树的构建。采用BlastP寻找相似性序列,并选择与其相似性高的10种不同植物WRKY蛋白的氨基酸序列,采用ClustalW2(http://www.ebi.ac.uk/Tools /msa/ clustalw2/)进行多序列比对;同时用MEGA6软件构建上述11种植物WRKY蛋白的氨基酸序列系统进化树。

1.2.50.6% NaHCO3胁迫处理前后基因表达量的分析。基因表达量的计算使用RPKM法[8],以RPKM值估计BkWRKY1基因的表达量,基因表达量符合FDR≤0.001,且log2Ratio|≥1的基因为显著差异表达基因。其中,Ratio为胁迫处理后RPKM值与对照组RPKM值的比值,log2Ratio为0.6%NaHCO3胁迫处理后BkWRKY1基因相对于对照组BkWRKY1基因表达量的变化。

2結果与分析

2.1吉尔吉斯白桦BkWRKY1基因序列与推断的氨基酸序列从盐胁迫后的吉尔吉斯白桦叶片转录组文库中测序获得了BkWRKY1基因的cDNA序列,测序结果显示,该基因cDNA包含2 189个碱基,序列比对和同源性分析表明,该基因cDNA序列包含1 728 bp的开放阅读框,编码575个氨基酸,5′非翻译区(UTR)为119 bp,3′非翻译区(UTR)为342 bp。ProtParam 预测该蛋白的分子量为62.483 kD,理论等电点为7.32,负电荷残基(Asp+Glu)总数为62个,正电荷残基(Arg+Lys)总数是62个。

2.2蛋白家族、保守区及二级结构预测对获得的基因推导的氨基酸序列用BlastP预测蛋白保守区,发现了WRKY结构域,位于227~285、402~461氨基酸之间含有WRKY蛋白的保守序列,pfam蛋白预测表明,与其对应的蛋白质家族WRKY DNA-domain family,以上分析表明该基因属于WRKY transcription factor家族。SOPMA软件预测结果表明BkWRKY1蛋白的二级结构以随机卷曲为主。注:ATG为起始密码子;*为终止密码子。

图2BkWRKY1基因的cDNA序列及由此推导的氨基酸序列2.3信号肽、疏水性及跨膜结构分析通过signalp 4.1预测,该蛋白不含有信号肽。ProScal蛋白亲水、疏水性预测表),蛋白疏水性最大值:1.789,疏水性最小值:-3.389,疏水平均值为-0.800,具有一定的亲水性。并根据ProtParam软件预测Grand average of hydropathicity(GRAVY):-0.777,所以该蛋白质为亲水蛋白。TMHMM程序预测结果表明,在BkWRKY1长度为575个氨基酸的蛋白序列中无跨膜结构。

2.4吉尔吉斯白桦等物种BkWRKY1基因的多序列比对分析用推导的氨基酸序列与蛋白质数据库进行同源性比较,其氨基酸序列与川桑(Morus notabilis,EXB67429.1)、烟草(Theobroma cacao,XP_007020620.1)、蓖麻(Ricinus communis、XP_002529048.1)、甜橙(Citrus sinensis,XP_006474948.1)、草莓(Fragaria vesca,XP_004294460.1)、大豆(Glycine max,XP_003553015.1)、葡萄(Vitis vinifera,XP_002274204.2)、麻风树(Jatropha curcas,AGJ52155.1)、杨树(Populus trichocarpa,XP_002298853.1)、蒺藜苜蓿(Medicago truncatula,XP_ 003600259.1)等植物WRKY转录因子的氨基酸序列进行两两比对,相似系数分别为72%、71%、70%、69%、69%、68%、68%、68%、66%、66%,相似性较高。氨基酸序列多重比对结果用MEGA6软件对该基因及其他物种WRKY转录因子的氨基酸序列进行多序列比对,绘制分子进化树,进化分析结果表明,吉尔吉斯白桦WRKY蛋白与大豆和蒺藜苜蓿的WRKY蛋白在进化上关系较近。

疏水性分析42卷23期田玉富等吉尔吉斯白桦BkWRKY1基因克隆与序列分析2.50.6% NaHCO3胁迫处理后BkWRKY1基因的表达量测得BkWRKY1基因对照组和胁迫处理后的RPKM值分别为19.803 1和23.622 4,log2Ratio为0.254 4,表明该基因在0.6% NaHCO3胁迫处理后表达量增加,为上调表达基因(图8)。

3结论与讨论

以白桦转录组文库获得的基因序列为信息来源,从中克隆得到了白桦BkWRKY1基因,属于WRKY family transcription factor家族,该基因含有2个WRKY结构域,可编码575个氨基酸,对应蛋白的分子量为62.483 kD,理论等电点为7.32,蛋白不含有信号肽,具有一定的亲水性,为亲水蛋白,不含有跨膜结构。同源性比较与进化树分析表明,吉尔吉斯白桦WRKY蛋白与大豆和蒺藜苜蓿的WRKY蛋白在进化关系上较近。0.6%NaHCO3胁迫处理后BkWRKY1基因上调表达。

WRKY转录因子在植物界中分布广泛,目前,发现辣椒[9]、油菜[10]、玉米[11]、番木瓜[12]、苜蓿[13]、杨树[14]、苹果[15]、森林草莓[16]、水稻[17]等多个种属植物中均含有WRKY转录因子。WRKY转录因子参与植物的多种生理生化与生长发育过程,在植物应对外界逆境胁迫时发挥十分重要的功能。如参与侧根的生长[18-20],调控衰老反应[21-23],调控新陈代谢[24-25],抑制种子的萌发[26-29],调控非生物胁迫[30-33],参与生物胁迫[34-49],參与抗病相关信号转导途径[50-55]。在盐胁迫条件下,许多植物组织器官中的WRKY基因能够作出积极的响应,上调或下调表达。QIU等[56]研究水稻中13个WRKY基因,指出其中9个基因能对NaCl做出响应;研究发现拟南芥可以忍受150 mmol/L NaCl胁迫,胁迫处理后WRKY17和WRKY33上调表达,WRKY17在诱导胁迫6h时达最高峰随后逐渐降低,而WRKY33的丰度在整个处理过程都保持很高;处理48h时WRKY25表达至最高峰,WRKY转录因子在盐胁迫反应中具有重要作用[57]。150 mmol/L NaCl胁迫下,小麦根中WRKY基因表达量随胁迫时间的延长而逐渐增加;茎中WRKY基因在胁迫1 h时达到最大值,而随胁迫时间的延长逐渐下降,由此可知对于盐胁迫,其根比茎敏感[58]。 珠美海棠幼苗在150 mmol/L NaCl胁迫处理后,MzWRKY19~MzWRKY27等共8个基因的表达无明显变化;叶片中有15个WRKY基因的表达受盐胁迫诱导、1个基因受盐胁迫抑制、9个基因的表达无明显变化[59]。200 mmol/L NaCl能强烈诱导MhWRKY40b表达,且胁迫6h时基因相对表达量达到最高,说明MhWRKY40b能够响应盐胁

图6氨基酸序列的多重比对图7白桦等11个物种的WRKY序列的系统进化树图80.6%NaHCO3胁迫处理后BkWRKY1基因的表达量迫,并有可能在盐胁迫反应中起到了重要调控作用[60]。

吉尔吉斯白桦BkWRKY1能够对0.6%NaHCO3胁迫作出上调表达的响应,但具体的响应机制还不清楚。因此,有待于进一步研究盐胁迫条件下吉尔吉斯白桦BkWRKY1基因及WRKY家族其他成员在抗盐过程中的功能,为选育抗盐碱的桦树品种提供试验依据。

参考文献

[1] ISHIGURO S,NAKAMURA K.Characterization of a cDNA encoding a novel DNA- binding protein,SPF1,that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and β-amylase from sweet potato[J].Mol Gen Genet,1994,244:563-571.

[2] RUSHTON P J,MACDONALD H,HUTTLY A K,et al.Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of a-Amy2 genes[J].Plant Molecular Biology,1995,29(4):691-702.

[3] RUSHTON P J,TORRES J T,PARNISKE M,et al.Interaction of elicitor-induced DNA- binding proteins with elicitor response elements in the promoters of parsley PR1 genes[J].The EMBO Journal,1996,15(20):5690-5700.

[4] PATER S D,GRECO V,PHAM K,et al.Characterization of a zinc-Dependent transcriptional activator from Arabidopsis[J].Nucleic Acids Resarch,1996,24(23):4624-4631.

[5] EULGEM T,RUSHTON P J,SCHMELZER E,et al.Early nuclear events in plant defense signaling:rapid gene activation by WRKY transcription factors[J].EMBO Journal,1999,18(17):4689-4699.

[6] 贾翠玲,侯和胜.植物WRKY转录因子的结构特点及其在植物防卫反应中的作用[J].天津农业科学,2010,16(2):21-26.

[7] EULGEM T,RUSHTON P J,ROBATZEK S,et al.The WRKY superfamily of plant transcription factors[J].Trends in Plant Science,2000,5(5):200-206.

[8] MORTAZAVI A,WILLIAMS B A,MCCUE K,et al.Mapping and quantifying mammalian transcriptomes by RNA-Seq.Nat Methods,2008,5(7):621-628.

[9] 王育娜.辣椒WRKY转录因子cDNA的分离与功能鉴定[D].福州:福建农林大学,2008.

[10] 薛华,张红岩,李小艳,等.油菜矮秆突变WRKY转录因子cDNA克隆及表达分析[J].西北植物学报,2008,28(3):452-458.

[11] 黎华.玉米WRKY家族转录因子基因ZmWRKY33的克隆及功能分析[D].扬州:扬州大学,2011.

[12] 潘林杰.番木瓜WRKY转录因子的基因表达谱及其功能的初步研究[D].武汉:华中农业大学,2011.

[13] 江腾,林勇祥,刘雪,等.苜蓿全基因组WRKY转录因子基因的分析[J].草业学报,2011,20(3):211-218.

[14] 何红升.杨树全基因组WRKY基因的鉴定及表达分析[D].合肥:安徽农业大学,2012.

[15] 许瑞瑞,张世忠,曹慧,等.苹果WRKY转录因子家族基因生物信息学分析[J].园艺学报,2012,39(10):2049-2060.

[16] 苗立祥,張豫超,杨肖芳,等.森林草莓全基因组WRKY转录因子基因的鉴定与分析[J].核农学报,2012,26(8):1124-1131.

[17] 鄂志国,王磊.水稻WRKY基因家族功能研究进展[J].核农学报,2012,26(5):750-755.

[18] ZHOU Q Y,TIAN A G,ZOU H F,et al.Soybean WRKY-type transcription factor genes,GmWRKY13,GmWRKY21,and GmWRKY54,confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J].Plant Biotechnology Journal,2008,6(5):486-503.

[19] DEVAIAH B N,KARTHIKEYAN A S,RAGHOTHAMA K G.WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis[J].Plant Physiology,2007,143(4):1789-1801.

[20] ZHANG J,PENG Y L,GUO Z J.Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants[J].Cell Research,2008,18(4):508-521.

[21] ROBATZEK S,SOMSSICH I E.A new member of the Arabidopsis WRKY transcription factor family,AtWRKY6,is associated with both senescence- and defence-related processes[J].Plant Journal,2001,28(2):123-133.

[22] ULKER B,MUKHTAR M S,SOMSSICH I E.The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling Pathways[J]. Planta,2007,226(1):125-137.

[23] JING S J,ZHOU X,SONG Y,et al.Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis[J].Plant Growth Regulation,2009,58(2):181-190.

[24] SUN C,PALMQVIST S,OLSSON H,et al.A novel WRKY transcription factor,SUSIBA2,participates in sugar Signaling in barley by binding to the sugar-responsive elements of the iso1 promoter[J].Plant Cell,2003,15(9):2076-2092.

[25] XU Y H,WANG J W,WANG S,et al.Characterization of GaWRKY1,a cotton transcription factor that regulates the sesquiterpene Synthase gene(+)-δ-cadinene synthase-A[J].Plant Physiology,2004,135(1):507-515.

[26] ZHANG Z L,XIE Z,ZOU X L,et al.A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling Pathway in aleurone cells[J].Plant Physiology,2004,134(4):1500-1513.

[27] XIE Z,ZHANG Z L,ZOU X L,et al.Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin Signaling in aleurone cells[J].The Plant Journal,2006,46(2):231-242.

[28] XIE Z,ZHANG Z L,HANZLIK S,et al.Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a Pathway involving an abscisic- acid-inducible WRKY gene[J].Plant Molecular Biology,2007,64(3):293-303.

[29] ZOU X,NEUMAN D,SHEN Q J.Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells[J].Plant Physiology,2008,148(1):176-186.

[30] WEI W,ZHANG Y,HAN L,et al.A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic Stress tolerance of transgenic tobacco[J].Plant Cell reports,2008,27(4):795-803.

[31] CHEN Y F,LI L Q,XU Q,et al.The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to Low Pi stress in Arabidopsis[J].The Plant Cell Oline,2009,21(11):3554-3566.

[32] JIANG Y,DEYHOLOS M K.Functional characterization of Arabidopsis NaCl- inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J].Plant Molecular Biology,2009,69(1/2):91-105.

[33] WU X,SHIROTO Y,KISHITANI S,et al.Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J].Plant Cell reports,2009,28(1):21-30.

[34] YANG B,JIANG Y Q,RAHMAN M H,et al.Identification and expression analysis of WRKY transcription factor genes in canola(Brassica napus L.)in response to fungal pathogens and hormone treatments[J].BMC Plant Biology,2009,9(1):68.

[35] KIM K C,LAI Z,FAN B,et al.Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J].The Plant Cell Oline,2008,20(9):2357-2371.

[36] RYU H S,HAN M,LEE S K,et al.A comprehensive expression analysis of the W RKY gene superfamily in rice plants during defense response[J].Plant Cell Reports,2006,25(8):836-847.

[37] ZHENG Z,QAMAR S A,CHEN Z X,et al.Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J].The Plant Journal,2006,48(4):592-605.

[38] KALDE M,BARTH M,SOMSSICH I E,et al.Members of the Arabidopsis WRKY group Ⅲ transcription factors are part of different plant defense signaling pathways [J].Molecular Plant-microbe Interactions,2003,16(4):295-305.

[39] KNOTH C,RINGLER J,DANGL J L,et al.Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica [J].Molecular Plant-microbe Interactions,2007,20(2):120-128.

[40] LIU X Q,BAI X Q,QIAN Q,et al.OsWRKY03,a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1[J].Cell Research,2005,15(8):593-603.

[41] CATALINO N J,SOMSSICH I E,ROBY D,et al.The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana[J].The Plant Cell Oline,2006,18(11):3289-3302.

[42] OH S K,YI S Y,YU S H,et al.CaWRKY2,a chili pepper transcription factor,is rap idly induced by incompatible plant pathogens[J].Molecular Cells,2006,22(1):58-64.

[43] XU X P,CHEN C H,FAN B F,et al.Physical and functional interactions between pathogen-induced Arabidopsis WRKY18,WRKY40,and WRKY60 transcription factors[J].The Plant Cell Oline,2006,18(5):1310-1326.

[44] LIPPOK B,BIRKENBIHL R P,RIVORY G,et al.Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements[J].Molecular Plant-microbe Interactions,2007,20(4):420-429.

[45] ZHENG Z Y,MOSHER S L,FAN B F,et al.Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae[J].

BMC Plant Biology,2007,7(2):1-13.

[46] YANG P Z,CHEN C H,WANG Z,et al.A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter[J].The Plant Journal,1999,18(2):141-149.

[47] YODA H,OGAWA M,YAMAGUCHI Y,et al.Identification of early-responsive genes associated with the hypersensitive response to tobacco mosaic virus and characterization of a WRKY-type transcription factor in tobacco plants[J].Molecular Genetics Genomics,2002,267(2):154-161.

[48] PARK C J,SHIN Y C,LEE B J,et al.A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to tobacco mosaic virus and Xanthomonas campestris[J].Planta,2006,223(2):168-179.

[49] CORMACK R S,EULGEM T,RUSHTON P J,et al.Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley[J].Biochimica et Biophysica Acta,2002,1576(1):92-100.

[50] CHEN C H,CHEN Z X.Potentiation of developmentally regulated plant defense r esponse by AtWRKY18,a pathogen-induced Arabidopsis transcription factor[J].Plant Physiology,2002,129(2):706-716.

[51] LIU X Q,BAI X Q,WANG X J,et al.OsWRKY71,a rice transcription factor,is involved in rice defense response[J].Plant Physiology,2007,164(8):969-979.

[52] ISHIDA T,HATTORI S,SANO R,et al.Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation[J].Plant Cell,2007,19(8):2531-2543.

[53] MCGRATH K C,DOMBRECHT B,MANNERS J M,et al.Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression[J].Plant Physiology,2005,139(2):949-959.

[54] MAO P,DUAN M R,WEI C H,et al.WRKY62 transcription factor acts down stream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression[J].Plant Cell Physiology,2007,48(6):833-842.

[55] QIU D Y,XIAO J,DING X H,et al.OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate-and jasmonate-dependent signaling [J].Molecular Plant-microbe Interactions,2007,20(5):492-499.

[56] QIU Y,JING S,FU J,et al.Cloning and analysis of expression profile of 13WRKY genes in rice[J].Chinese Science Bulletin,2004,49(20):2159-2168.

[57] JIANG Y,DEYHOLOS M K.Comprehensive transcriptional profiling of NaCl- stressed Arabidopsis roots reveals novel classes of responsive genes[J].BMC Plant Biology,2006,6(1):25.

[58] KAWAURA K,MOCHIDA K,OGIHARA Y.Genome-wide analysis for identification of salt-responsive genes in common wheat[J].Functional & Integrative Genomics,2008,8(3):277-286.

[59] 蔣阿维,张素维,孙杨吾,等.珠美海棠MzWRKY基因家族盐胁迫应答模式研究[J].园艺学报,2010,37(8):1213-1219.

[60] 罗昌国,渠慎春,张计育,等.湖北海棠MhWRKY40b在几种胁迫下的表达分析[J].园艺学报,2013,40(1):1-9.安徽农业科学,Journal of Anhui Agri. Sci.2014,42(23):

猜你喜欢
生物信息学分析
雷公藤牻牛儿基焦磷酸合酶基因TwGPPS克隆与表达分析
斑节对虾金属硫蛋白全基因DNA克隆及生物学信息分析
雷公藤贝壳杉烯酸氧化酶基因的全长cDNA克隆与表达分析
滇龙胆乙酰CoA转移酶基因的克隆与表达分析
西瓜食酸菌CusB蛋白的生物信息学分析
羊种布氏杆菌3型Omp25基因序列及其表达蛋白生物信息学分析
禾谷镰刀菌甾醇14α脱甲基酶基因cDNA克隆及生物信息学分析
湖羊SPLUNC1基因序列的生物信息学分析
西藏牦牛NGB基因克隆及生物信息学分析
地黄纤维素合酶基因的克隆与生物信息学分析