史 敏, 吕建鑫, 潘 波, 王晓军, 戴璐娴, 杨晓红, 付子毅, 谢 晖
(1. 江苏省扬州市妇幼保健院 乳腺科, 江苏 扬州, 225002; 2. 南京市妇幼保健院, 江苏 南京, 210004)
microRNA(miRNA)是一类长度约21~25 nt的非编码RNA, 在转录后水平调控靶基因的表达[1-2]。miRNA的成熟包括在胞核及胞质中的加工过程,在核酸内切酶Drosha作用下,miRNA的编码基因由RNA聚合酶Ⅱ转录形成具有茎环结构的RNA由核内输出,经Dicer酶加工形成成熟的miRNA,与Argonaute蛋白结合形成RISC(RNA-induced silencing complex, 基因沉默复合体),进而调控靶基因的表达[3-4]。miRNA与靶基因的3′-UTR区结合,导致mRNA降解和/或翻译抑制,下调靶蛋白的表达,从而达到调控靶基因表达的目的[5]。事实上, miRNA调节了约30%的蛋白编码基因,并参与多种生物学功能的调控,包括细胞增殖、凋亡及分化[6]。因此, miRNA的功能异常与多种人类疾病有关,包括肿瘤[7]在内。近年研究[8]表明, miRNA与多种实体肿瘤的耐药性密切相关。经对乳腺癌细胞耐药株及敏感株的研究,证实多种miRNA对乳腺癌多药耐药具有调控作用[9-14]。
乳腺癌是女性最常见的恶性肿瘤,全球每年约有1.4亿新发病例,约有46万妇女死于乳腺癌,是导致患癌症妇女死亡的首要原因[15]。近年来,我国女性乳腺癌发病率逐年显著递增,远高于其他国家,并趋于年轻化,严重威胁女性的生命健康和生活质量[16]。尽管在过去20年间,通过对疾病筛查的普遍实施和新的治疗方法的发展,西方国家的乳腺癌死亡率显著下降,但对这些治疗方法的耐药成为越来越严重的问题[17],据报道[18]约有90%的乳腺癌患者最终死于耐药。乳腺肿瘤对结构和功能不同的化疗药物均可能产生多药耐药(MDR), 明显影响化疗效果。MDR是指肿瘤细胞在接触一种抗肿瘤药物并产生耐药的同时,对结构、功能及杀伤机制迥异的多种抗肿瘤药物具有交叉耐药,是最重要的耐药形式之一。最新研究[19]表明,MDR已成为乳腺癌治疗失败的关键因素。
Iorio等[20]于2005年首次发现,miRNA在乳腺癌和正常乳腺组织中表达存在显著差异。Ryu等[21]在MCF-710A、MCF-7及MDA-MB-231等不同乳腺癌细胞株中鉴定出189种表达明显异常的miRNA,且这些miRNA均有不同程度的致癌潜能。后续研究发现,多种miRNA与乳腺癌耐药相关, miR-221/222在他莫昔芬耐药的细胞中低表达[22], miR-328在米托蒽醌耐药的细胞中低表达[23], miR-125在紫杉醇耐药的细胞中高表达[24]等等。这些证据充分说明: miRNA的表达异常是乳腺癌耐药细胞的一个重要特征,与乳腺癌耐药有着极其密切的关系。miRNA对乳腺癌耐药的调控机制十分复杂,目前并未完全阐明。现今较明确的机制主要包括调节ABC转运蛋白的表达、调节凋亡通路、调节药物代谢酶的表达及调节肿瘤干细胞的形成等。
乳腺癌患者产生MDR的最主要原因是由药物外排增加、细胞内药物浓度下降所致[25]。药物外排增加受ABC转运蛋白调节,其在预后较差的乳腺癌各亚型中均表达显著增加[26]。P糖蛋白(P-glycoprotein)是ABC转运蛋白中研究最为透彻的与药物外排有关的蛋白,与紫杉烷类及蒽环类化疗药物耐药密切相关。P-gp由MDR1基因(ABCB1)编码,可以转运多种分子结构,这即意味着只要对一种化疗药物耐药,通常就会对多种结构不同的药物耐药。研究[11,27]表明,miR-27a、miR-451可能上调多药耐药基因MDR1及其产物P-gp的表达。另有多项研究显示,miRNA能以ABC超家族的多个成员如ABCB、ABCG、ABCC等为靶基因,对肿瘤细胞耐药性进行调控。Pan等[10]研究发现, miR-328在乳腺癌细胞中与ABCG2的表达呈负相关,耐药细胞株MCF-7/MXl00中, miR-328表达显著下调,而ABCG2表达显著上调,导致细胞对米托蒽醌耐药。Zhou等[24]为进一步阐明miR-328的调控机制,分别检测转染miR-328的MCF-7/MXl00细胞、转染miR-328拮抗剂的MCF-7细胞以及破坏ABCG2 3′-UTR区相应miR-328反应元件(MRE)的MCF-7细胞等的ABCG2 3′-UTR的荧光素酶活性,发现其分别下降50%以上、上升100%及上升3倍,这充分证实miR-328是通过与ABCG2 3′-UTR区相应的MRE特异性结合,进而负调控ABCG2的表达。之后的研究[9]证实, miR-519c和miR-520h通过靶向作用于ABCG2 mRNA的3′-UTR区进而调控其蛋白的表达。Pelletier等[14]通过对乳腺癌患者ABCG2 3′-UTR区的检测,发现miRNA可干扰其多态性,增强与3′-UTR区的结合作用进而影响乳腺癌的MDR。后续研究还发现更多的miRNA以类似机制调控耐药相关蛋白的表达,如miR-451可负调控P-gP[11]、miR-326、miR-345和miR-7等,均可负调控多药耐药蛋白1(MRPl/ABCC1)[13, 28], 与乳腺癌对阿霉素、依托泊苷以及顺铂等化疗药物耐药性的形成密切相关。miR-200c[29]和miR-298[30]在耐多柔比星乳腺癌细胞中均低表达,当提高其表达量时,可增加乳腺癌细胞对多柔比星的敏感性并降低MDR1/ABCB1及P-gP的表达,从而提高细胞内多柔比星药物浓度。说明miRNA通过调节ABC转运蛋白的表达,从而造成细胞内药物外排、胞内药物浓度下降而致乳腺癌细胞耐药性增强。
细胞抗凋亡能力的提高是肿瘤细胞多药耐药产生的重要机制之一[31]。抗肿瘤药物通过介导内源性或外源性凋亡反应而使肿瘤细胞死亡。miRNA可通过调控凋亡通路相关蛋白表达,进而影响乳腺癌细胞对化疗药物的敏感性。Bcl-2是重要的抗凋亡蛋白,其表达水平与乳腺癌耐药细胞中相关的miRNA表达水平密切相关。Cittelly等[32]研究发现,Bcl-2的表达水平与miR-15a、miR-16的表达水平在MCF-7/HER2Δ16细胞中呈负相关,通过分别转染miR-15a和miR-16后, Bcl-2的表达水平显著降低,细胞对他莫昔芬的敏感性显著增强;而通过沉默miR-15a和miR-16, 使Bcl-2的表达显著增加,细胞的抗凋亡能力及对他莫昔芬的耐药性均显著增强,提示miR-15a、miR-16通过下调Bcl-2的表达,进而调控乳腺癌细胞MCF-7/HER2Δ16耐药性的形成。另有研究[34]证实,miR-125b、miR-221、miR-222和miR-923在耐紫杉醇乳腺癌细胞中高表达,并发现miR-125b与Bcl-2的表达水平呈正相关,均高表达,其机制为miR-125b通过抑制促凋亡基因Bak1(Bcl-2 antagonist killer 1)的表达致细胞内Bak1的表达水平显著降低,Bak1对Bcl-2的拮抗作用显著降低,Bcl-2表达水平上调,细胞抗凋亡能力增加,对紫杉醇耐药性增加。Ru等[33]发现miR-203可直接负调控细胞因子信号抑制因子3(SOCS3)的表达,进而降低了p53、p21、Bax等促凋亡蛋白的表达,使药物介导的细胞凋亡作用明显受抑制,引起乳腺癌细胞对顺铂的耐药;而敲除乳腺癌细胞miR-203基因后,其对顺铂的敏感性显著增加。而Kong等[34]的研究证实,miR-155通过调控转录因子FOX03a的表达使乳腺癌细胞对紫杉醇及多柔比星耐药,而FOX03a的下游靶点均参与了细胞凋亡进程。Gong等[35]研究证实, miR-21表达上调使乳腺癌细胞对曲妥珠单抗治疗耐药,进一步研究证实其使同源性磷酸酶-张力蛋白基因(phosphatase and tensin homolog, PTEN)表达缺失,从而导致了肿瘤细胞的凋亡受抑制。以上研究均表明,在乳腺癌细胞中,miRNA可以通过调控细胞凋亡而介导乳腺癌细胞耐药,这可能也是乳腺癌耐药性形成的重要原因之一。
药物代谢加快与乳腺癌患者对治疗反应减弱关系密切[36]。细胞色素P450(CYP450)酶家族是催化药物代谢反应的关键酶,超过80%的临床常用药物是经由CYP450代谢清除的。miRNA可以通过负调控药物代谢酶CYP450家族中的CYP3A4、CYP1B1等成员的表达,进而调控乳腺癌的耐药性。Tsuchiya等[37]在乳腺癌细胞MCF-7中证实miR-27b在转录后水平调节CYP1B1的表达,同时通过对24位乳腺癌患者癌组织及邻近非癌组织的研究发现, miR-27b在乳腺癌组织中低表达,并伴随CYP1B1蛋白的显著高表达。另有研究证实, miR-27b[38]、miR-148a[39]抑制CYP3A4的表达。而CYP1B1[40]、CYP3A4[41]是乳腺癌对多西他赛耐药的预测因子, CYP1B1、CYP3A4阳性乳腺癌对多西他赛的敏感性较阴性者显著降低。而这些miRNA在乳腺癌耐药细胞中均表达明显降低,致CYP3A4、CYP1B1等表达增加,细胞内化疗药物迅速代谢,难以维持胞内有效浓度,进而引起细胞耐药。
目前,乳腺癌干细胞(BCSC)的耐药性已得到普遍的证实。而miRNA的异常表达能诱导BCSC的形成、有助于干细胞特性的维持,可能是BCSC耐药性形成过程中的重要的调控因子。Shimono[42]和Iliopoulos[43]等研究均发现,miR-200家族在BCSC中表达水平显著下降,而miR-200b的表达上调会阻断BCSC的形成并干扰其特性的维持,从而显著增强化疗药物对肿瘤生长的抑制作用; miR-200b在细胞内的表达水平下降则能显著诱导BCSC的形成。miR-128[44]在耐药性乳腺癌初始细胞中表达水平显著下降,导致Bmi-1及ABCC5过表达,而显示干细胞特性,并可抑制阿霉素介导的细胞凋亡和DNA损伤作用,产生耐药;当上调BCSC中miR-128的表达水平时,能够显著逆转BCSC对阿霉素的耐药性。而Bmi-1过表达的细胞具有明显的干细胞特性,并证明对顺铂及培美曲塞耐药[45]。
如果能够利用miRNA的检测进行乳腺癌的诊断及其耐药性的分析,对于乳腺癌的临床治疗具有重要意义。Zhu等[46]发现,几乎所有体液中均可以检测到miR-16、miR-145和miR-155的表达。而Lodes等[47]更进一步证实,在1mL血浆中即可获得足够的可供检测的miRNA,同时可用于判断是正常组织还是肿瘤组织。这些充分说明外周血液中miRNA表达谱的检测对乳腺癌的诊断及耐药性的预测是有可能实现的。
乳腺癌细胞耐药性的形成与细胞内miRNA的异常表达密切相关,通过改变肿瘤细胞内相关miRNA的表达水平,逆转乳腺癌的耐药性是一种潜在的治疗策略。诱导miRNA的再表达,多采用引入合成的短双链RNA分子(即miRNA模拟物)的方式,在临床前期动物实验中,以病毒、脂质体及靶向纳米颗粒为载体的转染显示了良好的作用及耐受性[48]。Kim等[49]将含有miR-145的腺病毒转入人乳腺癌细胞株和乳腺癌小鼠模型体内,发现能有效抑制乳腺癌细胞生长,并且Ad-miR-145与5-Fu联合使用疗效明显高于单独使用时的疗效。Bourguignon等[50]采用特异性的anti-miR-21序列沉默MCF-7细胞内过表达的miR-2l后,能有效阻断HA-CD44介导的肿瘤细胞抗凋亡、耐药等行为的形成。
[1] Yu X, Zhang X, Dhakal I B, et al. Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells[J]. BMC cancer, 2012, 12(1): 29.
[2] Bhat-Nakshatri P, Wang G, Collins NR, et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells[J]. Nucleic acids research, 2009, 37(14): 4850.
[3] Wickramasinghe NS, Manavalan TT, Dougherty SM, et al. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells[J]. Nucleic Acids Res, 2009, 37(8):2584.
[4] Katchy A, Edvardsson K, Aydogdu E, et al. Estradiol-activated estrogen receptor alpha does not regulate mature microRNAs in T47D breast cancer cells[J]. The Journal of steroid biochemistry and molecular biology, 2012, 128(3): 145.
[5] Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2):215.
[6] Zhao Y, Srivastava D. A developmental view of microRNA function[J]. Trends Biochem Sci, 2007, 32(4): 189.
[7] Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way[J]. Cell, 2009, 136(4): 586.
[8] Barbarotto E, Schmittgen T D, Calin G A. MicroRNAs and cancer: profile, profile, profile[J]. Int J Cancer, 2008, 122(5): 969.
[9] Li X, Pan YZ, Seigel GM, et al. Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520h) and their differential expression in stem-like ABCG2+ cancer cells[J]. Biochem Pharmacol, 2011, 81(6): 783.
[10] Pan Y Z, Morris M E, Yu A M. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells[J]. Mol Pharmacol, 2009, 75(6): 1374.
[11] Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin[J]. Mol Cancer Ther, 2008, 7(7): 2152.
[12] To K K W, Robey R W, Knutsen T, et al. Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2[J]. Mol Cancer Ther, 2009, 8(10): 2959.
[13] Liang Z, Wu H, Xia J, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1[J]. Biochem Pharmacol, 2010, 79(6): 817.
[14] Pelletier C, Speed W C, Paranjape T, et al. Rare BRCA1 haplotypes including 3′UTR SNPs associated with breast cancer risk[J]. Cell Cycle, 2011, 10(1): 90.
[15] Jemal A, Bray F, Center M M, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69.
[16] Li L, Ji J, Wang J, et al. Attributable causes of breast cancer and ovarian cancer in china: reproductive factors, oral contraceptives and hormone replacement therapy[J]. Chin J Cancer Res, 2012, 24(1): 9.
[17] Ahmad A. Pathways to breast cancer recurrence. ISRN Oncol, 2013. 2013.
[18] Szakács G, Paterson J K, Ludwig J A, et al. Targeting multidrug resistance in cancer[J]. Nat Rev Drug Discov, 2006, 5(3): 219.
[19] Seruga B, Hertz P C, Le L W, et al. Global drug development in cancer: a cross-sectional study of clinical trial registries[J]. Ann Oncol, 2010, 21(4): 895.
[20] Iorio M V, Ferracin M, Liu C G, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer Res, 2005, 65(16): 7065.
[21] Ryu S, Joshi N, McDonnell K, et al. Discovery of novel human breast cancer microRNAs from deep sequencing data by analysis of pri-microRNA secondary structures[J]. PLoS One, 2011, 6(2): e16403.
[22] Gonzalez-Angulo A M, Morales-Vasquez F, Hortobagyi G N. Overview of resistance to systemic therapy in patients with breast cancer[J]. Adv Exp Med Biol, 2007, 608: 1.
[23] Barbarotto E, Schmittgen T D, Calin G A. MicroRNAs and cancer: profile, profile, profile[J]. Int J Cancer, 2008, 122(5): 969.
[24] Zhou M, Liu Z, Zhao Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression[J]. J Biol Chem, 2010, 285(28): 21496.
[25] Chen KG, Sikic BI. Molecular pathways: regulation and therapeutic implications of multidrug resistance[J]. Clin Cancer Res, 2012, 18(7): 1863.
[26] Clarke R, Leonessa F, Trock B. Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis[J]. WB Saunders, 2005, 32: 9.
[27] Zhu H, Wu H, Liu X, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells[J]. Biochem Pharmacol, 2008, 76(5): 582.
[28] Pogribny I P, Filkowski J N, Tryndyak V P, et al. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin[J]. Int J Cancer, 2010, 127(8): 1785.
[29] Chen J, Tian W, Cai H, et al. Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer[J]. Med Oncol, 2012, 29(4): 2527.
[30] Bao L, Hazari S, Mehra S, et al. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298[J]. Am J Pathol, 2012, 180(6): 2490.
[31] Hsu P C, Hung H C, Liao Y F, et al. Ornithine decarboxylase attenuates leukemic chemotherapy drugs-induced cell apoptosis and arrest in human promyelocytic HL-60 cells[J]. Leuk Res, 2008, 32(10): 1530.
[32] Cittelly D M, Das P M, Salvo V A, et al. Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors[J]. Carcinogenesis, 2010, 31(12): 2049.
[33] Ru P, Steele R, Hsueh E C, et al. Anti-miR-203 Upregulates SOCS3 Expression in Breast Cancer Cells and Enhances Cisplatin Chemosensitivity[J]. Genes Cancer, 2011, 2(7): 720.
[34] Kong W, He L, Coppola M, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer[J]. J Biol Chem, 2010, 285(23): 17869.
[35] Gong C, Yao Y, Wang Y, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer[J]. J Biol Chem, 2011, 286(21): 19127.
[36] Ingelman-Sundberg M, Rodriguez-Antona C. Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy[J]. Philos Trans R Soc Lond B Biol Sci, 2005, 360(1460): 1563.
[37] Tsuchiya Y, Nakajima M, Takagi S, et al. MicroRNA regulates the expression of human cytochrome P450 1B1[J]. Cancer Res, 2006, 66(18): 9090.
[38] Pan YZ, Gao W, Yu AM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting[J]. Drug Metab Dispos, 2009, 37(10): 2112.
[39] Takagi S, Nakajima M, Mohri T, et al. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4[J]. J Biol Chem, 2008, 283(15): 9674.
[40] Desarnaud F, Geck P, Parkin C, et al. Gene expression profiling of the androgen independent prostate cancer cells demonstrates complex mechanisms mediating resistance to docetaxel[J]. Cancer Biol Ther, 2011, 11(2): 204.
[41] Sakurai K, Enomoto K, Matsuo S, et al. CYP3A4 expression to predict treatment response to docetaxel for metastasis and recurrence of primary breast cancer[J]. Surg Today, 2011, 41(5): 674.
[42] Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells[J]. Cell, 2009, 138(3): 592.
[43] Iliopoulos D, Lindahl-Allen M, Polytarchou C, et al. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells[J]. Mol Cell, 2010, 39(5): 761.
[44] Zhu Y, Yu F, Jiao Y, et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5[J]. Clin Cancer Res, 2011, 17(22): 7105.
[45] Cortes-Dericks L, Carboni GL, Schmid RA, et al. Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed[J]. Int J Oncol, 2010, 37(2): 437.
[46] Zhu W, Qin W, Atasoy U, et al. Circulating microRNAs in breast cancer and healthy subjects[J]. BMC Res Notes, 2009, 2(1): 89.
[47] Lodes M J, Caraballo M, Suciu D, et al. Detection of cancer with serum miRNAs on an oligonucleotide microarray[J]. PLoS One, 2009, 4(7): e6229.
[48] Castaeda C A, Agullo-Ortuo M T, Fresno Vara J A, et al. Implication of miRNA in the diagnosis and treatment of breast cancer[J]. Expert Rev Anticancer Ther, 2011, 11(8): 1265.
[49] Kim S J, Oh J S, Shin J Y, et al. Development of microRNA-145 for therapeutic application in breast cancer[J]. J Control Release, 2011, 155(3): 427.
[50] Bourguignon L Y W, Spevak C C, Wong G, et al. Hyaluronan-CD44interaction with protein kinase C(epsilon) promotes oncogenic signaling by the stem cell marker Nanog and the Production of microRNA-21, leading to down-regulation of the tumor suppressor protein PDCD4, anti-apoptosis, and chemotherapy resistance in breast tumor cells[J]. J Biol Chem, 2009, 284(39): 26533.