罗冰
数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法.它能使人领悟到数学的真谛,并对人们学习和应用数学知识解决问题的思维活动起着指导和调控的作用.日本数学教育家米山国藏认为,学生在进入社会以后,如果没有什么机会应用数学,那么作为知识的数学,通常在出校门后不到一两年就会忘掉,然而不管他们从事什么业务工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期地在他们的生活和工作中发挥重要作用.灵活运用数学思想方法解决问题,往往可以化难为易、化腐朽为神奇,事半功倍.下面以勾股定理中渗透的数学思想为例说明.
一、分类思想
例1.(2013年贵州黔西南州)一直角三角形的两边长分别为3和4,则第三边的长为( )
点评:本题的易错点是受“勾三股四弦五”的影响,直接把边长为4的边当作直角边,从而误选A,犯了考虑问题不全面的错误.
二、方程思想
例2.(2013年山东济南)如图1,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()
A.12mB.13mC.16mD.17m
分析:观察图形,当绳子末端拉到距离旗杆8m处,可过绳子末端向旗杆作垂线,这样可以得到一个直角三角形,然后设旗杆的高度为未知数,进而运用勾股定理列方程求解.
解:如图2,设旗杆的高度为x,则AC=AD=x,AB=x-2,BC=8.
在Rt△ABC中,由勾股定理,得(x-2)2+82=x2.
解得x=17m,即旗杆的高度为17m,答案选D.
三、整体思想
例3.(2013年江苏扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为____________.
分析:设矩形的两邻边长分别为a、b(a>b),则依据题意有a-b=2,a2+b2=16.而矩形的面积等于ab,关键要设法将两个等式转化为含有ab的式子.
解:设矩形的两邻边长分别为a、b (a>b),则a-b=2.
五、数形结合思想
例5.(2013年湖南张家界)如图4,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC上运动.当△ODP是腰长为5的等腰三角形时,点P的坐标为________.
分析:易知OD=5,要使△ODP为腰长为5的等腰三角形,可以点O为圆心,OD为半径作圆;也可以点D为圆心,OD为半径作圆.
解:由C(10,0)可知OD=5.
(1)以点O为圆心,OD为半径作圆交边
六、构造思想例6.同例3
分析:根据已知条件,联想到证明勾股定理的弦图,本例便有如下巧妙解法.endprint
数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法.它能使人领悟到数学的真谛,并对人们学习和应用数学知识解决问题的思维活动起着指导和调控的作用.日本数学教育家米山国藏认为,学生在进入社会以后,如果没有什么机会应用数学,那么作为知识的数学,通常在出校门后不到一两年就会忘掉,然而不管他们从事什么业务工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期地在他们的生活和工作中发挥重要作用.灵活运用数学思想方法解决问题,往往可以化难为易、化腐朽为神奇,事半功倍.下面以勾股定理中渗透的数学思想为例说明.
一、分类思想
例1.(2013年贵州黔西南州)一直角三角形的两边长分别为3和4,则第三边的长为( )
点评:本题的易错点是受“勾三股四弦五”的影响,直接把边长为4的边当作直角边,从而误选A,犯了考虑问题不全面的错误.
二、方程思想
例2.(2013年山东济南)如图1,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()
A.12mB.13mC.16mD.17m
分析:观察图形,当绳子末端拉到距离旗杆8m处,可过绳子末端向旗杆作垂线,这样可以得到一个直角三角形,然后设旗杆的高度为未知数,进而运用勾股定理列方程求解.
解:如图2,设旗杆的高度为x,则AC=AD=x,AB=x-2,BC=8.
在Rt△ABC中,由勾股定理,得(x-2)2+82=x2.
解得x=17m,即旗杆的高度为17m,答案选D.
三、整体思想
例3.(2013年江苏扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为____________.
分析:设矩形的两邻边长分别为a、b(a>b),则依据题意有a-b=2,a2+b2=16.而矩形的面积等于ab,关键要设法将两个等式转化为含有ab的式子.
解:设矩形的两邻边长分别为a、b (a>b),则a-b=2.
五、数形结合思想
例5.(2013年湖南张家界)如图4,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC上运动.当△ODP是腰长为5的等腰三角形时,点P的坐标为________.
分析:易知OD=5,要使△ODP为腰长为5的等腰三角形,可以点O为圆心,OD为半径作圆;也可以点D为圆心,OD为半径作圆.
解:由C(10,0)可知OD=5.
(1)以点O为圆心,OD为半径作圆交边
六、构造思想例6.同例3
分析:根据已知条件,联想到证明勾股定理的弦图,本例便有如下巧妙解法.endprint
数学思想方法是以具体数学内容为载体,又高于具体数学内容的一种指导思想和普遍适用的方法.它能使人领悟到数学的真谛,并对人们学习和应用数学知识解决问题的思维活动起着指导和调控的作用.日本数学教育家米山国藏认为,学生在进入社会以后,如果没有什么机会应用数学,那么作为知识的数学,通常在出校门后不到一两年就会忘掉,然而不管他们从事什么业务工作,那种铭刻在人脑中的数学精神和数学思想方法,会长期地在他们的生活和工作中发挥重要作用.灵活运用数学思想方法解决问题,往往可以化难为易、化腐朽为神奇,事半功倍.下面以勾股定理中渗透的数学思想为例说明.
一、分类思想
例1.(2013年贵州黔西南州)一直角三角形的两边长分别为3和4,则第三边的长为( )
点评:本题的易错点是受“勾三股四弦五”的影响,直接把边长为4的边当作直角边,从而误选A,犯了考虑问题不全面的错误.
二、方程思想
例2.(2013年山东济南)如图1,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()
A.12mB.13mC.16mD.17m
分析:观察图形,当绳子末端拉到距离旗杆8m处,可过绳子末端向旗杆作垂线,这样可以得到一个直角三角形,然后设旗杆的高度为未知数,进而运用勾股定理列方程求解.
解:如图2,设旗杆的高度为x,则AC=AD=x,AB=x-2,BC=8.
在Rt△ABC中,由勾股定理,得(x-2)2+82=x2.
解得x=17m,即旗杆的高度为17m,答案选D.
三、整体思想
例3.(2013年江苏扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为____________.
分析:设矩形的两邻边长分别为a、b(a>b),则依据题意有a-b=2,a2+b2=16.而矩形的面积等于ab,关键要设法将两个等式转化为含有ab的式子.
解:设矩形的两邻边长分别为a、b (a>b),则a-b=2.
五、数形结合思想
例5.(2013年湖南张家界)如图4,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC上运动.当△ODP是腰长为5的等腰三角形时,点P的坐标为________.
分析:易知OD=5,要使△ODP为腰长为5的等腰三角形,可以点O为圆心,OD为半径作圆;也可以点D为圆心,OD为半径作圆.
解:由C(10,0)可知OD=5.
(1)以点O为圆心,OD为半径作圆交边
六、构造思想例6.同例3
分析:根据已知条件,联想到证明勾股定理的弦图,本例便有如下巧妙解法.endprint