相兴伟 周宇芳
(浙江省海洋开发研究院,舟山 316000)
昆虫包涵体衍生型病毒经口感染相关蛋白的研究进展
相兴伟 周宇芳
(浙江省海洋开发研究院,舟山 316000)
了解昆虫杆状病毒包涵体衍生型病毒(Occlusion-derived virus,ODV)的经口感染相关蛋白对揭示杆状病毒建立原发感染的机制、明确昆虫的先天免疫系统,以及研究控制昆虫新策略等方面具有重要意义。目前已鉴定的经口感染因子(Per os infectivity factors,PIF)包括P74、PIF1、PIF2、PIF3、PIF4、PIF5(ODV-E56)和PIF6。此外,与ODV病毒粒子经口感染有关的蛋白有ODV-E66、VP91、Ac108、ORF 145和ORF 150。综述近年来关于上述经口感染相关蛋白的结构和功能等研究成果,分析了这些蛋白的分子生物学特征。
杆状病毒 包涵体衍生型病毒 经口感染 分子特征
杆状病毒是一类专一性感染节肢动物的病原微生物,在感染周期中产生两种表型不同但遗传物质完全一样的病毒形态,即出芽型病毒(Budded virus,BV)和包涵体衍生型病毒(Occlusion-derived virus,ODV)。BV在病毒感染早期大量产生,负责组织间的水平传播。而在病毒感染晚期,数以千计的ODV被装配包埋入由多角体蛋白组成的包涵体(Occlusion body,OB)中,该类型病毒负责代与代间的垂直传播。目前对BV的研究比较深入,而对ODV的研究相对较少。ODV病毒粒子借其表面的囊膜蛋白与中肠柱状上皮细胞的微绒毛表面受体结合,通过膜融合使病毒核衣壳进入中肠上皮细胞内而启动原发感染。因此,ODV病毒粒子囊膜上含有决定宿主范围和启动原发感染的蛋白质因子,这些蛋白因子被称为经口感染因子(Per os infectivity factors,PIF)。近年来,随着多种杆状病毒基因组测序的完成,越来越多的经口感染相关蛋白得到鉴定(图 1)。目前确定的pif基因有p74、pif-1(orf119)、pif-2(orf22)、pif-3(orf115)、pif-4(orf96)、pif-5(odv-e56)和pif-6(orf68)、而 ORF 145、ORF 150、VP91、ODV-E66和 Ac108与经口感染有关。下面以杆状病毒的模式代表种苜蓿银纹夜蛾核型多角体病毒(Autographa californica multiple nucleopolyhedrov-irus,AcMNPV)为例,对杆状病毒中与经口感染相关的蛋白进行综述。
图1 经口感染相关蛋白
1.1 P74
p74基 因(ORF 138,119 135-121 072 nt)长1 938 bp,编码的分子量74 kD由645个氨基酸残基组成P74。P74是第一个被鉴定到的与经口感染相关的ODV囊膜蛋白,按照发现时间可以把P74看作是PIF-0[1,2]。在所有已测序的杆状病毒中都存在P74及其同源物,而且在Nudiviruses病毒[3],唾液腺肥大病毒(Salivary gland hypertrophy viruses,SGHVs)[4]和寄生蜂多分病毒(Polydnaviruses)[5]中也存在其同源物。P74蛋白的羧基端存在一个高度疏水的跨膜序列,该序列使P74定位于ODV囊膜上[6,7]。Haas-Stapleton等[8]证实P74能介导ODV与中肠上皮细胞表面的特殊受体相结合;与野生型病毒相比,缺失P74的突变病毒的经口感染力下降了105倍,而结合到中肠上皮细胞的ODV数量仅仅降低了3倍,表明ODV与中肠上皮细胞的结合并不能确保原发感染。研究表明P74以饱和方式与柱状上皮细胞的刷状缘基底膜囊泡(Brush border membrane vesicles,BBMV)相互结合,从棉铃虫中肠的BBMV中鉴定到一个30 kD的潜在受体蛋白,而在甜菜夜蛾中肠的BBMV中筛选到一个35 kD的蛋白[2,9]。Slack等[10]研究发现在中肠强碱性环境下,P74经胰蛋白酶裂解才能发挥其经口感染作用。该研究小组近期证实缺失C端高度疏水跨膜域的P74仍然具有经口感染的能力,而且能够功能性地修复敲除p74的重组病毒[11]。最近研究人员发现,在ODV从包涵体释放过程中,P74首先被包涵体内的内源性碱性蛋白酶迅速酶解为两段,再被胰蛋白酶裂解N端,表明P74在发挥作用的过程中经历了两次酶解过程[12]。Wang等[13]将p74、p10和p26一起敲除,观察到形成的多角体未包涵病毒粒子,推测P74可能与ODV的成熟以及随后的包埋有关。最近研究证实,PIF-1、PIF-2与PIF-3在ODV病毒粒子表面形成一个稳定的复合体,而P74与复合体有关,但敲除p74并不影响复合体的形成[14,15]。在BV表面展示P74并不能增强BV的经口感染能力[16]。
1.2 PIF-1
pif-1基因(ORF 119,100 699-102 291 nt)长1 593 bp,编码分子量60 kD的由530个氨基酸残基组成的PIF-1。首次在灰翅夜蛾核型多角体病毒(Spodoptera littoralis Nucleopolyhedrovirus,SpliNPV)中鉴定到PIF-1蛋白是ODV囊膜蛋白[17]。像P74蛋白一样,PIF-1也是高度保守的,存在于所有已经测序的杆状病毒中,而且在Nudiviruses病毒中也存在PIF-1的同源物[3]。敲除该基因不影响病毒在培养细胞中的毒力,却使重组病毒丧失了经口感染昆虫幼虫的能力,而且PIF-1也参与介导了ODV与昆虫中肠柱状上皮细胞表面的特异性受体的识别与结合的过程[18]。Peng等[14,15]发现PIF-1、PIF-2和PIF-3在ODV病毒粒子的表面形成一个稳定的复合体,敲除pif-1后复合体将不再形成。
1.3 PIF-2
pif-2基因(ORF 22,17 301-18 449 nt)长1 149 bp,编码分子量44 kD的由382个氨基酸残基组成的PIF-2。PIF-2在目前已测序的杆状病毒基因组中高度保守,在Nudiviruses病毒中也存在其同源物[19]。在PIF-2的 N端存在一段高度疏水的跨膜域,PIF-2特异性地分布在ODV囊膜的表面[6,15]。分别在甜菜夜蛾核型多角体病毒(Spodoptera exigua multiple nucleopolyhedrovirus,SeMNPV)和棉铃虫核型多角体 病 毒(Helicoverpa armigera nucleopolyhedrovirus,HearNPV)中敲除pif-2,都观察到经口感染能力显著降低[20,21]。与P74和PIF-1相似,缺失PIF2不影响BV的感染能力,却影响经口感染能力,且PIF2也参与介导昆虫中肠上皮细胞与ODV结合的
过程[18]。如前所述,PIF-2是经口感染因子复合体的组分,敲除pif-2不会形成复合体[14,15]。
1.4 PIF-3
pif-3基因(ORF 115,99 182-99 796 nt)长615 bp,编码分子量23 kD的由204个氨基酸残基组成的PIF-3。与前面介绍的经口感染因子相似,PIF-3在已测序的杆状病毒基因组中也是高度保守的,也存在于Nudiviruses病毒中[22]。在PIF-3的N端也存在一段高度疏水的跨膜域,而且研究人员已证实PIF-3特异性地定位于ODV囊膜[18]。Ohkawa等[18]研究发现PIF-3也是经口感染必需的,却不参与介导ODV与中肠上皮细胞的结合和融合的过程,推测PIF-3可能在原发感染的过程起到一种未知但关键的作用。最近报道PIF-3是经口感染因子复合体的必备组分,很好地解释了PIF-3为何也是经口感染必须的[14,15]。
1.5 PIF-4
pif-4基因(ORF 96,84 346-84 867 nt)长522 bp,编码分子量28 kD的由173个氨基酸残基组成的PIF-4。PIF-4也是高度保守的,存在于目前已经测序的所有杆状病毒和Nudiviruses病毒中[22]。研究发现PIF-4在家蚕BmNPV中的同源物ORF 79分布在ODV囊膜上[23],而在AcMNPV中不仅存在于ODV囊膜上,也存在于BV的囊膜上[24],最近发现PIF-4特异性的存在于HearNPV的ODV囊膜上[6]。在AcMNPV中敲除该基因发现,不影响BV的感染能力和多角体的形成,却使重组病毒丧失了经口感染能力[24]。PIF-4也是经口感染因子复合体的组分,而且与PIF-1、PIF-2和PIF-3形成一个稳定的复合体,敲除pif-4后影响了稳定复合体的形成[14]。棉铃虫核型多角体病毒(HearNPV)的ORF85是PIF-4的同源物,研究发现缺失ha85导致复合体不能正常形成,而且酵母双杂交证实HA85与P74、PIF-1、PIF-2和 PIF-3存在相互作用[25]。我们在BmNPV中敲除Bm79使得重组病毒丧失感染对幼虫的经口感染能力,双分子荧光蛋白互补和免疫共沉淀表明Bm79与PIF1、PIF2、PIF3和ODV-E66存在相互作用。
1.6 PIF-5(ODV-E56)
pif-5基因(ORF 148,129 008-130 138 nt)长1 131 bp,编码分子量41 kD 的由376个氨基酸残基组成的PIF-5,也称为ODV-E56。ODV-E56是高度保守的,其同源物存在于所有已公布的杆状病毒和Nudiviruses病毒中[22]。在AcMNPV、HearNPV、CuniNPV、ChchNPV和PrGV的ODV的蛋白质组中都发现了ODV-E56及其同源物[26-30],令人疑惑的是在AcMNPV的BV的蛋白质组中也鉴定到了该蛋白[31],系统分析HearNPV的BV和ODV发现ODV-E56特异性地存在于ODV囊膜上[6]。ODV-E56是种属特异性因子,能决定宿主范围[32]。先前的研究表明,将LacZ插入替换其中的139个氨基酸不会影响病毒的毒力[33]。而最近的一些研究表明缺失ODV-E56 虽不影响BV的感染力,却与经口感染相关[34],本实验室在这方面也做了相关工作[35],而且茶刺蛾核型多角体病毒(Rachiplusia ou multiple nucleopolyhedrovirus,RoMNPV)的ODV-E56可以功能性地修复缺失ODV-E56的AcMNPV[36]。与PIF-3类似,ODV-E56也不参与介导ODV与中肠上皮细胞的结合和融合的过程[34]。在研究经口感染因子复合体的过程中,发现ODV-E56并不是复合体的组分[14],而酵母双杂交证明ODV-E56可与38K和PIF-3发生相互作用[15],推测ODV-E56可能在原发感染的过程中通过与经口感染因子复合体的组分互作而发挥作用。
1.7 PIF-6
pif-6基 因(ORF68,129 008-130 138 nt) 长579 bp,编码分子量22.3 kD的由192个氨基酸残基组成的PIF-6。PIF-6也是高度保守的,存在于所有的已测序的杆状病毒中。BmNPV ORF 56是其同源物,在研究Bm56的过程中,发现其定位于ODV的核衣壳上,在BV和ODV的囊膜上都不存在,与其他经口感染因子的定位明显不同[37]。而在研究AcMNPV的Ac68时发现其在BV和ODV上都有分布[38],蛋白质组学鉴定到PIF-6的同源物存在于HearNPV的ODV囊膜上[6]。在BmNPV中敲除bm56,对BV的毒力无影响,却延长了幼虫的致死时间,而且影响多角体的形态[37]。先前研究发现当AcMNPV缺失ac68时,对BV的感染力、核衣壳结构和包涵体形态都无影响,却延长了致死时间[39]。
近期研究人员发现Ac68与经口感染相关,将其命名为PIF-6[38]。巧合的是,在分析经口感染因子复合体的组分时,预测Ac68可能是其中的一种组分,目前尚缺少试验数据证实[14]。
2.1 ODV-E66
odv-e66基因(ORF 46,36 718-38 832 nt)长2 115 bp,编码分子量66 kD的由704个氨基酸残基组成的ODV-E66。在研究ODV-E66的过程中证实ODV囊膜蛋白存在于病毒诱导的核内微泡中[40]。ODV-E66在鳞翅目杆状病毒中高度保守,其N端也存在一个高度疏水域[41]。ODV-E66特异性地定位于ODV囊膜上,在BV中不存在[6]。之前对ODV-E66的研究主要集中在N端的跨膜域上,将其与EGFP融合表达时可传递融合蛋白至核内膜和ODV囊膜[41]。研究人员发现在缺失FP25K的条件下,ODV-E66转运到病毒诱导的核内囊泡的数量明显减少[42]。共价交联试验进一步证实FP25K直接参与ODV-E66至核膜的传送过程[43]。本实验室成功构建了敲除odv-e66的突变病毒,发现缺失ODV-E66不影响病毒的感染力和核衣壳的组装,却影响病毒的经口感染能力[44]。分析鉴定经口感染因子复合体的组分时,发现其并非复合体的组成成分[14]。酵母双杂交试验表明ODV-E66与PIF-2和PIF-3相互作用,表明ODV-E66虽不是经口感染因子复合体的组分,却与复合体的组分相互作用,从而在经口感染的过程中发挥作用[45]。ODV-E66与肺炎链球菌的透明质酸酶具有很高的相似度,可能是一种透明质酸酶,在原发感染过程中有助于穿透细胞外基质[46]。最近研究报道,在杆状病毒感染的昆虫细胞培养基中发现一种新型的软骨素酶,经鉴定其是截短的ODV-E66,其具体生物学机制有待进一步阐述[47]。
2.2 ORF 145和ORF 150
ORF 145和ORF 150彼此相关,这两个蛋白的氨基酸序列具有23%的同源性,而且与棉铃虫痘病毒的11 kD蛋白相关。ac145存在于大部分已测序的杆状病毒中,除双翅目核型多角体病毒外;而ac150仅存在于与AcMNPV亲缘关系较近的鳞翅目核型多角体病毒中。Ac145和Ac150存在一个与几丁质结合的功能域[48],而且Ac145在HearNPV中同源物被证实可与几丁质结合[49]。研究人员证实Ac145和Ac150在BV和ODV的囊膜中都能检测到,单独敲除ac145使得对粉纹夜蛾的感染力下降6倍,对烟蚜夜蛾却无影响,单独敲除ac150无影响,将2个基因一起删除导致对烟蚜夜蛾的感染能力下降39倍[50]。通过血淋巴注射和经口感染的对比试验来研究野生型和敲除ac150的突变病毒的毒力差别,结果在烟蚜夜蛾、斜纹夜蛾和粉纹夜蛾的幼虫中重组病毒的经口感染能力明显降低[51]。在BmNPV中敲除ac150的同源物bm126,发现经口感染能力无明显差别,而致死时间有一定程度的延长[52]。因此,Ac145和Ac150也被分类为PIF因子,与其他PIF因子不同,它们起介导作用却不是经口感染必需的。
2.3 VP91
vp91基因(ORF 83,67 884-70 427 nt)长3 543 bp,编码分子量91 kD的由1 180个氨基酸残基组成的VP91。在OpMNPV中首次鉴定到了VP91,其并不是特异性地存在于ODV囊膜上,在BV中也存在[53]。VP91在核膜区域积累,分布于病毒感染的细胞核中,免疫电镜观察到VP91存在于ODV的囊膜和衣壳中[53]。VP91高度保守,在所有杆状病毒和Nudiviruses病毒中都有存在[22]。在许多杆状病毒的ODV中都检测到了VP91及其同源物[6,26-30],在AcMNPV和HearNPV的BV的蛋白质组学中却未鉴定到VP91及其同源物[6,29]。在分析经口感染因子复合体的组成成分时发现,其是经口感染因子复合体的成分[14]。本实验室在BmNPV中敲除该基因的同源物发现,其影响BV的产生,而且与核衣壳的成熟以及随后病毒粒子包埋进入包涵体的过程相关。这些结果表明BmP95对BV的产生、核衣壳的精确组装,以及ODV的成熟是必需的[54]。目前没有相关试验数据表明P95与经口感染相关,因为敲除该基因影响了BV的形成,不能获得缺失BmP95的子代病毒粒子,因而无法进行相关的生物学试验验证其经口感染特性。最近,研究人员在AcMNPV中敲除该基因的几丁质结合域,导致重组病毒的经口感染能力显著降低,暗示了该蛋白的几丁质结合域可能在ODV病毒粒子与围食膜或者其他含有几丁质的
组织相互结合的过程中起作用[55]。
2.4 Ac108
ac108基因(ORF 108,94 392-94 709 nt)长318 bp,编码分子量11 kD的由105个氨基酸残基组成的Ac108。Ac108在鳞翅目杆状病毒中高度保守,其同系物出现在所有I型NPV、II型NPV和GV(除PlxyGV)中。在HearNPV和柞蚕核型多角体病毒(Antheraea pernyi nucleopolyhedrovirus,AnpeNPV)的ODV中检测到Ac108的同系物,表明该蛋白为一ODV蛋白[6,56]。斜纹夜蛾核型多角体病毒(Spodoptera frugiperda nucleopolyhedrovirus,SfMNPV)ORF 58是其同源物,利用λ-red同源重组系统构建敲除sf58的重组病毒,经口感染试验表明,敲除型病毒的多角体不能感染斜纹夜蛾的幼虫,而修复型病毒与野生型病毒的多角体可感染其幼虫,表明Sf58是仅存在于鳞翅目杆状病毒中的一种新鉴定的经口感染因子[57]。Ac108在BmNPV中的同源物是Bm91,在BmNPV中敲除bm91其不影响BmNPV的毒力,使得幼虫的致死时间延长[58]。本实验室研究Bm91发现,其特异性地定位于ODV囊膜,而生物学试验与Tang等[58]研究存在一定差异(未发表数据)。研究人员通过蛋白质组学研究经口感染因子复合体的组成成分时,预测Ac108可能是经口感染因子复合体的组分[14]。
目前,对杆状病毒与昆虫中肠之间的生物化学和物理方面的相互作用探索较少,而这方面的知识是发展新的基因方法控制农业害虫的理论基础。因此,了解ODV经口感染相关蛋白能为控制有害昆虫提供干预策略,而且阐明这些科学问题将有助于揭示杆状病毒的入侵机制及规律,并为设计相对广谱的抗病毒入侵药物提供新思路。同时,作为杆状病毒原发感染的场所,幼虫中肠也能合成许多特异性表达的抗病毒蛋白,但是目前尚不清楚其抗病毒机理。因此,从宿主中肠组织中筛选与经口感染相关蛋白互作的蛋白质,有可能找到抑制病毒感染的宿主蛋白,拓展杆状病毒的生物防治和应用。
[1]Faulkner P, Kuzio J, Williams GV, et al. Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo[J]. J Gen Virol, 1997, 78(Pt 12):3091-3100.
[2]Zhou W, Yao L, Xu H, et al. The function of envelope protein P74 from Autographa californica multiple nucleopolyhedrovirus in primary infection to host[J]. Virus Genes, 2005, 30:139-150.
[3]Wang Y, Jehle JA. Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates:new insights on an old topic[J]. J Invertebr Pathol, 2009, 101:187-193.
[4]Garcia-Maruniak A, Abd-Alla AM, Salem TZ, et al. Two viruses that cause salivary gland hypertrophy in Glossina pallidipes and Musca domestica are related and form a distinct phylogenetic clade[J]. J Gen Virol, 2009, 90:334-346.
[5]Bezier A, Annaheim M, Herbiniere J, et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus[J]. Science, 2009, 323:926-930.
[6]Hou D, Zhang L, Deng F, et al. Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus[J]. J Virol, 2013, 87:829-839.
[7]Slack JM, Dougherty EM, Lawrence SD. A study of the Autographa californica multiple nucleopolyhedrovirus ODV envelope protein p74 using a GFP tag[J]. J Gen Virol, 2001, 82:2279-2287.
[8]Haas-Stapleton EJ, Washburn JO, Volkman LE. P74 mediates specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to primary cellular targets in the midgut epithelia of Heliothis virescens larvae[J]. J Virol, 2004, 78:6786-6791.
[9]Yao L, Zhou W, Xu H, et al. The Heliothis armigera single nucleocapsid nucleopolyhedrovirus envelope protein P74 is required for infection of the host midgut[J]. Virus Res, 2004, 104:111-121.
[10]Slack JM, Lawrence SD, Krell PJ, et al. Trypsin cleavage of the baculovirus occlusion-derived virus attachment protein P74 is prerequisite in per os infection[J]. J Gen Virol, 2008, 89:2388-2397.
[11]Slack JM, Lawrence SD, Krell PJ, et al. A soluble form of P74 can act as a per os infectivity factor to the Autographa californica multiple nucleopolyhedrovirus[J]. J Gen Virol, 2010, 91:915-918.
[12]Peng K, van Lent JW, Vlak JM, et al. In situ cleavage of baculovirus occlusion-derived virus receptor binding protein P74 in the peroral infectivity complex[J]. J Virol, 2011, 85:10710-10718.
[13]Wang L, Salem TZ, Campbell DJ, et al. Characterization of a virion occlusion-defective Autographa californica multiple nucleopolyhedrovirus mutant lacking the p26, p10 and p74 genes[J]. J Gen Virol, 2009, 90:1641-1648.
[14]Peng K, van Lent JW, Boeren S, et al. Characterization of novel components of the baculovirus per os infectivity factor complex[J]. J Virol, 2012, 86:4981-4988.
[15]Peng K, van Oers MM, Hu Z, et al. Baculovirus per os infectivity factors form a complex on the surface of occlusion-derived virus[J]. J Virol, 2010, 84:9497-9504.
[16]Alfonso V, Lopez MG, Carrillo E, et al. Surface display of AcMNPV occlusion-derived P74 does not enhance oral infectivity of budded viruses[J]. Intervirology, 2012, 55:247-251.
[17]Kikhno I, Gutierrez S, Croizier L, et al. Characterization of pif, a gene required for the per os infectivity of Spodoptera littoralis nucleopolyhedrovirus[J]. J Gen Virol, 2002, 83:3013-3022.
[18]Ohkawa T, Washburn JO, Sitapara R, et al. Specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115[J]. J Virol, 2005, 79:15258-15264.
[19]Cheng CH, Liu SM, Chow TY, et al. Analysis of the complete genome sequence of the Hz-1 virus suggests that it is related to members of the Baculoviridae[J]. J Virol, 2002, 76:9024-9034.
[20]Fang M, Nie Y, Wang Q, et al. Open reading frame 132 of Helicoverpa armigera nucleopolyhedrovirus encodes a functional per os infectivity factor(PIF-2)[J]. J Gen Virol, 2006, 87:2563-2569.
[21]Pijlman GP, Pruijssers AJ, Vlak JM. Identification of pif-2, a third conserved baculovirus gene required for per os infection of insects[J]. J Gen Virol, 2003, 84:2041-2049.
[22]Wang Y, Kleespies RG, Huger AM, et al. The genome of Gryllus bimaculatus nudivirus indicates an ancient diversification of baculovirus-related nonoccluded nudiviruses of insects[J]. J Virol, 2007, 81:5395-5406.
[23]Xu HJ, Yang ZN, Wang F, et al. Bombyx mori nucleopolyhedrovirus ORF79 encodes a 28-kDa structural protein of the ODV envelope[J]. Arch Virol, 2006, 151:681-695.
[24]Fang M, Nie Y, Harris S, et al. Autographa californica multiple nucleopolyhedrovirus core gene ac96 encodes a per os infectivity factor(PIF-4)[J]. J Virol, 2009, 83:12569-12578.
[25]Huang H, Wang M, Deng F, et al. ORF85 of HearNPV encodes the per os infectivity factor 4(PIF4)and is essential for the formation of the PIF complex[J]. Virology, 2012, 427:217-223.
[26]Braunagel SC, Russell WK, Rosas-Acosta G, et al. Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus[J]. Proc Natl Acad Sci USA, 2003, 100:9797-9802.
[27]Deng F, Wang R, Fang M, et al. Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion-derived virus-associated proteins, HA44 and HA100[J]. J Virol, 2007, 81:9377-9385.
[28]Perera O, Green TB, Stevens SM Jr, et al. Proteins associated with Culex nigripalpus nucleopolyhedrovirus occluded virions[J]. J Virol, 2007, 81:4585-4590.
[29]Wang XF, Zhang BQ, Xu HJ, et al. ODV-associated proteins of the Pieris rapae granulovirus[J]. J Proteome Res, 2011, 10:2817-2827.
[30]Xu F, Ince IA, Boeren S, et al. Protein composition of the occlusion derived virus of Chrysodeixis chalcites nucleopolyhedrovirus[J]. Virus Res, 2011, 158:1-7.
[31]Wang R, Deng F, Hou D, et al. Proteomics of the Autographa californica nucleopolyhedrovirus budded virions[J]. J Virol, 2010, 84:7233-7242.
[32]Harrison RL, Bonning BC. Application of maximum-likelihood models to selection pressure analysis of group I nucleopolyhedrovirus genes[J]. J Gen Virol, 2004, 85:197-210.
[33]Braunagel SC, He H, Ramamurthy P, et al. Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins:ODV-E18, ODV-E35, and ODV-EC27[J]. Virology, 1996, 222, :100-114.
[34]Sparks WO, Harrison RL, Bonning BC. Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusionderived virus to the host midgut[J]. Virology, 2011, 409:69-76.
[35]Xiang X, Chen L, Guo A, et al. The Bombyx mori nucleopolyhedrovirus(BmNPV)ODV-E56 envelope protein is also a per os infectivity factor[J]. Virus Res, 2011, 155:69-75.
[36]Harrison RL, Sparks WO, Bonning BC. Autographa californica multiple nucleopolyhedrovirus ODV-E56 envelope protein is required for oral infectivity and can be substituted functionally by Rachiplusia ou multiple nucleopolyhedrovirus ODV-E56[J]. J Gen Virol, 2010, 91:1173-1182.
[37]Xu HJ, Yang ZN, Zhao JF, et al. Bombyx mori nucleopolyhedrovirus ORF56 encodes an occlusion-derived virus protein and is not essential for budded virus production[J]. J Gen Virol, 2008, 89:1212-1219.
[38]Nie Y, Fang M, Erlandson MA, et al. Analysis of the Autographa californica multiple nucleopolyhedrovirus overlapping gene pair lef3 and ac68 reveals that AC68 is a per os infectivity factor and that LEF3 is critical, but not essential, for virus replication[J]. J Virol, 2012, 86:3985-3994.
[39]Li G, Wang J, Deng R, et al. Characterization of AcMNPV with a deletion of ac68 gene[J]. Virus Genes, 2008, 37:119-127.
[40]Hong T, Braunagel SC, Summers MD. Transcription, translation, and cellular localization of PDV-E66:a structural protein of the PDV envelope of Autographa californica nuclear polyhedrosis virus[J]. Virology, 1994, 204:210-222.
[41]Hong T, Summers MD, Braunagel SC. N-terminal sequences from Autographa californica nuclear polyhedrosis virus envelope proteins ODV-E66 and ODV-E25 are sufficient to direct reporter proteins to the nuclear envelope, intranuclear microvesicles and the envelope of occlusion derived virus[J]. Proc Natl Acad Sci USA, 1997, 94:4050-4055.
[42]Braunagel SC, Burks JK, Rosas-Acosta G, et al. Mutations within the Autographa californica nucleopolyhedrovirus FP25K gene decrease the accumulation of ODV-E66 and alter its intranuclear transport[J]. J Virol, 1999, 73:8559-8570.
[43]Braunagel SC, Williamson ST, Saksena S, et al. Trafficking of ODV-E66 is mediated via a sorting motif and other viral proteins:facilitated trafficking to the inner nuclear membrane[J]. Proc Natl Acad Sci USA, 2004, 101:8372-8377.
[44]Xiang X, Chen L, Hu X, et al. Autographa californica multiple nucleopolyhedrovirus odv-e66 is an essential gene required for oral infectivity[J]. Virus Res, 2011, 158:72-78.
[45]Peng K, Wu M, Deng F, et al. Identification of protein-protein interactions of the occlusion-derived virus-associated proteins of Helicoverpa armigera nucleopolyhedrovirus[J]. J Gen Virol, 2010, 91:659-670.
[46]Vigdorovich V, Miller AD, Strong RK. Ability of hyaluronidase 2 to degrade extracellular hyaluronan is not required for its function as a receptor for jaagsiekte sheep retrovirus[J]. J Virol, 2007, 81:3124-3129.
[47]Sugiura N, Setoyama Y, Chiba M, et al. Baculovirus envelope protein ODV-E66 is a novel chondroitinase with distinct substrate specificity[J]. J Biol Chem, 2011, 286:29026-29034.
[48]Dall D, Luque T, O’Reilly D. Insect-virus relationships:sifting by informatics[J]. Bioessays, 2001, 23:184-193.
[49]Wang D, Zhang CX. HearSNPV orf83 encodes a late, nonstructural protein with an active chitin-binding domain[J]. Virus Res, 2006, 117:237-243.
[50]Lapointe R, Popham HJ, Straschil U, et al. Characterization of two Autographa californica nucleopolyhedrovirus proteins, Ac145 and Ac150, which affect oral infectivity in a host-dependent manner[J]. J Virol, 2004, 78:6439-6448.
[51]Zhang JH, Ohkawa T, Washburn JO, et al. Effects of Ac150 on virulence and pathogenesis of Autographa californica multiple nucleopolyhedrovirus in noctuid hosts[J]. J Gen Virol, 2005, 86:1619-1627.
[52]Hao B, Huang J, Sun X, et al. Variants of open reading frame Bm126 in wild-type Bombyx mori nucleopolyhedrovirus isolates exhibit functional differences[J]. J Gen Virol, 2009, 90:153-161.
[53]Russell RL, Rohrmann GF. Characterization of P91, a protein associated with virions of an Orgyia pseudotsugata baculovirus[J]. Virology, 1997, 233:210-223.
[54]Xiang X, Shen Y, Yang R, et al. Bombyx mori nucleopolyhedrovirus BmP95 plays an essential role in budded virus production and nucleocapsid assembly[J]. J Gen Virol, 2013, 94:1669-1679.
[55]Zhu S, Wang W, Wang Y, et al. The baculovirus core gene ac83 is required for nucleocapsid assembly and per os infectivity of Autographa californica nucleopolyhedrovirus[J]. J Virol, 2013, 87:10573-10586.
[56]Shi SL, Pan MH, Lu C. Characterization of Antheraea pernyi nucleopolyhedrovirus p11 gene, a homologue of Autographa
californica nucleopolyhedrovirus orf108[J]. Virus Genes, 2007, 35:97-101.
[57]Simon O, Palma L, Williams T, et al. Analysis of a naturallyoccurring deletion mutant of Spodoptera frugiperda multiple nucleopolyhedrovirus reveals sf58 as a new per os infectivity factor of lepidopteran-infecting baculoviruses[J]. J Invertebr Pathol, 2012, 109:117-126.
[58]Tang Q, Li G, Yao Q, et al. Bm91 is an envelope component of ODV but is dispensable for the propagation of Bombyx mori nucleopolyhedrovirus[J]. J Invertebr Pathol, 2013, 113:70-77.
(责任编辑 狄艳红)
Research Progress of Proteins Associated with Per os Infectivity of the Occlusion-derived Virus
Xiang Xingwei Zhou Yufang
(Zhejiang Marine Development Research Institute,Zhoushan 316000)
The study of baculovirus proteins associated with per os infectivity is of great importance not only for viral biology but also for the fact that these proteins expose vulnerabilities in the insect immune system and this knowledge is also fundamental for the development of new strategies for insect control. Recent researches show that the proteins associated with per os infectivity of the occlusion-derived virus(ODV)include P74, PIF1, PIF2, PIF3, PIF4, PIF5(ODV-E56), PIF6, ODV-E66, VP91, Ac108, ORF 145 and ORF 150. This paper reviewed recent research achievements about the structure and function of the proteins and analyzed the molecular biology characteristics of these proteins.
Baculovirus Occlusion-derived virus Per os infectivity factors Molecular characteristics.
2014-03-27
国家科技支撑项目(2012BAD29B06),浙江省自然科学基金项目(LQ14C170001)
相兴伟,男,博士,研究方向:分子生物学及其基因工程利用;E-mail:xxw11086@126.com